应用科学学报 ›› 2025, Vol. 43 ›› Issue (1): 20-34.doi: 10.3969/j.issn.0255-8297.2025.01.002

• 计算机应用专辑 • 上一篇    下一篇

基于预训练大语言模型的实体关系抽取框架及其应用

魏伟1, 金成功1, 杨龙1, 周默2, 孟祥主2, 冯慧3   

  1. 1. 郑州大学 管理学院, 河南 郑州 450001;
    2. 京东零售 用户智能运营部, 北京 100176;
    3. 郑州大学 商学院, 河南 郑州 450001
  • 收稿日期:2024-07-09 出版日期:2025-01-30 发布日期:2025-01-24
  • 通信作者: 冯慧,副教授,研究方向为循环经济、社会治理。E-mail:huifeng@zzu.edu.cn E-mail:huifeng@zzu.edu.cn
  • 基金资助:
    国家自然科学基金(No.72001191);河南省高校人文社会科学研究项目(No.2025-ZDJH-101);郑州大学教育教学改革研究与实践项目(留学生教育专项)重点项目(No.2023ZZUJGXM-LXS010);郑州大学公共管理学学科建设创新中心项目资助

Entity Relationship Extraction Framework Based on Pre-trained Large Language Model and Its Application

WEI Wei1, JIN Chenggong1, YANG Long1, ZHOU Mo2, MENG Xiangzhu2, FENG Hui3   

  1. 1. School of Management, Zhengzhou University, Zhengzhou 450001, Henan, China;
    2. User Intelligent Operation Department, JD Retail, Beijing 100176, China;
    3. Business School, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2024-07-09 Online:2025-01-30 Published:2025-01-24

摘要: 实体关系抽取是构建大规模知识图谱和专业领域数据集的重要基础之一,为此提出了一种基于预训练大语言模型的实体关系抽取框架(entity relation extraction framework based on pre-trained large language model,PLLM-RE),并针对循环经济政策进行了实体关系抽取研究。基于所提出的PLLM-RE框架,首先使用RoBERTa模型进行循环经济政策文本的实体识别,然后选取基于Transformer的双向编码器表示(bidirectional encoder representation from Transformers,BERT)模型进行循环经济政策实体关系抽取研究,以构建该政策领域的知识图谱。研究结果表明,PLLM-RE框架在循环经济政策实体关系抽取任务上的性能优于对比模型BiLSTM-ATT、PCNN、BERT以及ALBERT,验证了所提框架在循环经济政策实体关系抽取任务上的适配性和优越性,为后续循环经济领域资源的信息挖掘和政策分析提供了新思路。

关键词: 预训练大语言模型, 实体关系抽取框架, 循环经济政策, 政策分析

Abstract: Entity relationship extraction is a crucial foundation for building large-scale knowledge graphs and domain-specific datasets. This paper proposes an entity relationship extraction framework based on pre-trained large language models (PLLM-RE) for relation extraction in circular economy policies. Within this framework, entity recognition of circular economy policy texts is performed based on the model RoBERTa. Subsequently, the bidirectional encoder representation from Transformers (BERT) is employed for entity relation extraction, facilitating the construction of a knowledge graph in the field of circular economic policies. Experimental results demonstrate the framework outperforms the baseline models including BiLSTM-ATT, PCNN, BERT and ALBERT in task of entity relationship extraction for circular economy policies. These findings validate the adaptability and superiority of the proposed framework, providing new ideas for information mining and policy analysis in the field of circular economy resources in the future.

Key words: pre-trained large language model, entity relationship extraction framework, circular economy policy, policy analysis

中图分类号: