[1] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]//31st Annual Conference on Neural Information Processing Systems, 2017: 5998-6008. [2] Devlin J, Chang M, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]//Conference of the North-American-Chapter of the Association-forComputational-Linguistics-Human Language Technologies, 2019: 4171-4186. [3] Zhao W X, Zhou K, Li J Y, et al. A survey of large language models [DB/OL]. 2024[2024- 07-09]. https://arxiv.org/abs/2303.18223. [4] Lee J, Yoon W, Kim S, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining [J]. Bioinformatics, 2020, 36(4): 1234-1240. [5] 景慎旗, 赵又霖. 基于医学领域知识和远程监督的医学实体关系抽取研究[J]. 数据分析与知识发现, 2022, 6(6): 105-114. Jing S Q, Zhao Y L. Extracting medical entity relationships with domain-specific knowledge and distant supervision [J]. Data Analysis and Knowledge Discovery, 2022, 6(6): 105-114. (in Chinese) [6] 王欢, 王兴芬, 吕金娜. 面向金融文本的实体关系抽取方法[J]. 计算机工程与设计, 2023, 44(11): 3345-3351. Wang H, Wang X F, Lyu J N. Entity relation extraction method for financial text [J]. Computer Engineering and Design, 2023, 44(11): 3345-3351. (in Chinese) [7] 唐晓波, 刘志源. 金融领域文本序列标注与实体关系联合抽取研究[J]. 情报科学, 2021, 39(5): 3-11. Tang X B, Liu Z Y. Research on text sequence tagging and joint extraction of entity and relation in financial field [J]. Information Science, 2021, 39(5): 3-11. (in Chinese) [8] 高丹, 彭敦陆, 刘丛. 海量法律文书中基于CNN的实体关系抽取技术[J]. 小型微型计算机系统, 2018, 39(5): 1021-1026. Gao D, Peng D L, Liu C. Entity relation extraction based on CNN in large-scale text data [J]. Journal of Chinese Computer Systems, 2018, 39(5): 1021-1026. (in Chinese) [9] 陈彦光, 王雷, 孙媛媛, 等. 面向法律文本的三元组抽取模型[J]. 计算机工程, 2021, 47(5): 277-284. Chen Y G, Wang L, Sun Y Y, et al. Triple extraction model for legal texts [J]. Computer Engineering, 2021, 47(5): 277-284. (in Chinese) [10] Veena G, Gupta D, Kanjirangat V. Semi-supervised bootstrapped syntax-semantics-based approach for agriculture relation extraction for knowledge graph creation and reasoning [J]. IEEE Access, 2023, 11: 138375-138398. [11] 李书琴, 庞文婷. 词嵌入BERT-CRF玉米育种实体关系联合抽取方法[J]. 农业机械学报, 2023, 54(11): 286-294. Li S Q, Pang W T. Joint extraction method of entity and relation in maize breeding based on BERT-CRF and word embedding [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(11): 286-294. (in Chinese) [12] 黄徐胜, 朱月琴, 付立军, 等. 基于BERT的金矿地质实体关系抽取模型研究[J]. 地质力学学报, 2021, 27(3): 391-399. Huang X S, Zhu Y Q, Fu L J, et al. Research on a geological entity relation extraction model for gold mine based on BERT [J]. Journal of Geomechanics, 2021, 27(3): 391-399. (in Chinese) [13] 邱芹军, 王斌, 徐德馨, 等. 地质领域文本实体关系联合抽取方法[J]. 高校地质学报, 2023, 29(3): 419-428. Qiu Q J, Wang B, Xu D X, et al. Research on the joint extraction method of entity relations in geological domain [J]. Geological Journal of China Universities, 2023, 29(3): 419-428. (in Chinese) [14] 曹碧薇, 曹玖新, 桂杰, 等. 面向中文文学作品的长文本人物关系抽取[J]. 中文信息学报, 2023, 37(5): 88-100. Cao B W, Cao J X, Gui J, et al. Character relation extraction from Chinese literature [J]. Journal of Chinese Information Processing, 2023, 37(5): 88-100. (in Chinese) [15] 魏静, 岳昆, 段亮, 等. 基于指代消解的民间文学文本实体关系抽取[J]. 河南师范大学学报(自然科学版), 2024, 52(1): 84-92. Wei J, Yue K, Duan L, et al. Coreference resolution for relation extraction in folk literature [J]. Journal of Henan Normal University (Natural Science Edition), 2024, 52(1): 84-92. (in Chinese) [16] 杨文霞, 王卫华, 何朗, 等. 知识图谱赋能智慧教育的研究与实践——以武汉理工大学“线性代数” 课程为例[J]. 高等工程教育研究, 2023(6): 111-117. Yang W X, Wang W H, He L, et al. Research and practice of empowering smart education with knowledge graph—a case study of “linear algebra” at Wuhan University of Technology [J]. Research in Higher Education of Engineering, 2023(6): 111-117. (in Chinese) [17] 赵宇博, 张丽萍, 闫盛, 等. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 计算机应用, 2024, 44(8): 2421-2429. Zhao Y B, Zhang L P, Yan S, et al. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. (in Chinese) [18] Zhou G D, Su J, Zhang J, et al. Exploring various knowledge in relation extraction [C]//43rd Annual Meeting of the Association for Computational Linguistic, 2005: 427-434. [19] 甘丽新, 万常选, 刘德喜, 等. 基于句法语义特征的中文实体关系抽取[J]. 计算机研究与发展, 2016, 53(2): 284-302. Gan L X, Wan C X, Liu D X, et al. Chinese named entity relation extraction based on syntactic and semantic features [J]. Journal of Computer Research and Development, 2016, 53(2): 284-302. (in Chinese) [20] 黄瑞红, 孙乐, 冯元勇, 等. 基于核方法的中文实体关系抽取研究[J]. 中文信息学报, 2008, 22(5): 102-108. Huang R H, Sun L, Feng Y Y, et al. A study on kernel-based Chinese relation extraction [J] Journal of Chinese Information Processing, 2008, 22(5): 102-108. (in Chinese) [21] 刘克彬, 李芳, 刘磊, 等. 基于核函数中文关系自动抽取系统的实现[J]. 计算机研究与发展, 2007, 44(8): 1406-1411. Liu K B, Li F, Liu L, et al. Implementation of a kernel-based Chinese relation extraction system [J]. Journal of Computer Research and Development, 2007, 44(8): 1406-1411. (in Chinese) [22] 陈鹏, 郭剑毅, 余正涛, 等. 基于凸组合核函数的中文领域实体关系抽取[J]. 中文信息学报, 2013, 27(5): 144-148, 155. Chen P, Guo J Y, Yu Z T, et al. Chinese field entity relation extraction based on convex combination kernel function [J]. Journal of Chinese Information Processing, 2013, 27(5): 144- 148, 155. (in Chinese) [23] Socher R, Huval B, Manning C D, et al. Semantic compositionality through recursive matrix-vector spaces [C]//Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 2012: 1201-1211. [24] Zeng D J, Liu K, Lai S W, et al. Relation classification via convolutional deep neural network [C]//25th International Conference on Computational Linguistics, 2014: 2335-2344. [25] Zhang S, Zheng D Q, Hu X C, et al. Bidirectional long short-term memory networks for relation classification [C]//29th Pacific Asia Conference on Language, Information and Computation, 2015: 73-78. [26] Lin Y K, Shen S Q, Liu Z Y, et al. Neural relation extraction with selective attention over instances [C]//54th Annual Meeting of the Association for Computational Linguistics, 2016: 2124-2133. [27] Katiyar A, Cardie C. Going out on a limb: joint extraction of entity mentions and relations without dependency trees [C]//55th Annual Meeting of the Association for Computational Linguistic, 2017: 917-928. [28] Lan Z, Chen M, Goodman S, et al. ALBERT: a lite BERT for self-supervised learning of language representations [DB/OL]. 2019[2024-07-09]. http://arxiv.org/abs/1909.11942. [29] Liu Y, Ott M, Goyal N, et al. RoBERTa: a robustly optimized BERT pretraining approach [DB/OL]. 2019[2024-07-09]. https://arxiv.org/abs/1907.11692. [30] Wu S, He Y. Enriching pre-trained language model with entity information for relation classification [C]//28th ACM International Conference on Information and Knowledge Management, 2019: 2361-2364. [31] Tom B, Benjamin M, Nick R, et al. Language models are few-shot learners [C]//Annual Conference on Neural Information Processing Systems, 2020: 6-12. [32] Ross T, Marcin K, Guillem C, et al. Galactica: a large language model for science [DB/OL]. 2022[2024-07-09]. https://arxiv.org/abs/2211.09085. [33] Chowdhery A, Narang S R, Devlin J, et al. PaLM: scaling language modeling with pathways [DB/OL]. 2022[2024-07-09]. https://arxiv.org/abs/2204.02311. [34] Hugo T, Thibaut L, Gautier I, et al. LLaMA: open and efficient foundation language models [DB/OL]. 2023[2024-07-09]. https://arxiv.org/abs/2302.13971. [35] Yu B H, Zhang X X. Research and application of semi-supervised entity recognition method in the field of technology policy [C]//11th International Conference of Information and Communication Technology, 2022: 436-440. [36] Qi W S, Xu Q, Ding H. Named entity recognition of benefit enterprise policy based on RoBERTa_wwm_ext_BiLSTM-CRF [C]//International Conference on Algorithms, Data Mining, and Information Technology, 2022: 140-146. [37] 喻金平, 朱伟锋, 廖列法. 基于RoBERTa-wwm-BiLSTM-CRF的扶持政策文本实体识别研究[J]. 计算机工程与科学, 2023, 45(8): 1498-1507. Yu J P, Zhu W F, Liao L F. Entity recognition of support policy text based on RoBERTawwm-BiLSTM-CRF [J]. Computer Engineering & Science, 2023, 45(8): 1498-1507. (in Chinese) [38] 刘明辉, 唐望径, 许斌, 等. 实体类别信息增强的命名实体识别算法[J]. 应用科学学报, 2023, 41(1): 1-9. Liu M H, Tang W J, Xu B, et al. Named entity recognition algorithm enhanced with entity category information [J]. Journal of Applied Sciences, 2023, 41(1): 1-9. (in Chinese) [39] 蒋翔, 马建霞, 袁慧. 基于BiLSTM-IDCNN-CRF模型的生态治理技术领域命名实体识别[J]. 计算机应用与软件, 2021, 38(3): 134-141. Jiang X, Ma J X, Yuan H. Named entity recognition in the field of ecological management technology based on BiLSTM-IDCNN-CRF model [J]. Computer Applications and Software, 2021, 38(3): 134-141. (in Chinese) [40] 孙甜, 陈海涛, 吕学强, 等. 新能源专利文本术语抽取研究[J]. 小型微型计算机系统, 2022, 43(5): 950-956. Sun T, Chen H T, Lyu X Q, et al. Research on term extraction of new energy patent text [J]. Journal of Chinese Computer Systems, 2022, 43(5): 950-956. (in Chinese) |