应用科学学报 ›› 2025, Vol. 43 ›› Issue (4): 709-720.doi: 10.3969/j.issn.0255-8297.2025.04.012

• 信号与信息处理 • 上一篇    

一种基于轮廓度量的卷积神经网络遥感图像建筑物分割方法

熊俊, 刘守全, 安旭, 郭甜, 邰宝宇   

  1. 国网北京市电力公司电缆分公司, 北京 100022
  • 收稿日期:2022-02-25 发布日期:2025-07-31
  • 通信作者: 熊俊,研究方向为高压电缆运维检修技术研究。E-mail:3583273157@qq.com E-mail:3583273157@qq.com
  • 基金资助:
    国家电网公司2019年总部科技项目(No.5200-201917070A-0-0-00)

A Method of Building Segmentation in Remote Sensing Image Based on Contour Measurement of Convolutional Neural Network

XIONG Jun, LIU Shouquan, AN Xu, GUO Tian, TAI Baoyu   

  1. Cable Branch of State Grid Beijing Electric Power Company, Beijing 100022, China
  • Received:2022-02-25 Published:2025-07-31

摘要: 在遥感图像地物分割任务中,由于各种建筑物尺寸大小不一、存在被树木遮挡、光照不稳定等因素,卷积神经网络模型通常会丢失目标轮廓和细微结构等高频信息,导致遥感图像的建筑物精准分割成为一个具有挑战性的问题。为此提出了一种基于轮廓度量的深度卷积神经网络模型,通过引入Sobel边缘检测器,网络能够预先获取额外的边缘,从而以无监督的方式增强图像分割的轮廓,然后利用去噪模块来减少隐藏在低级特征中的噪声。在模型训练过程中损失函数除了采用常用的Dice系数和交叉熵损失,还引入轮廓约束损失函数进一步增强建筑物的边缘信息和几何拓扑结构。该方法在Inria Aerial Image Labeling和Massachusetts Buildings两个建筑物遥感图像数据集上进行实验,结果表明,本文模型能够自适应学习光照弱和遮挡目标的边缘细节特征,从而提升建筑物分割精度,分割结果的平均交并比为0.7860和0.7655,边缘几何精度评价指标Boundary IoU为0.7359和0.7168。

关键词: 遥感图像, 轮廓约束, 轮廓增强, 特征去噪, 卷积神经网络

Abstract: Accurate building segmentation in remote sensing images remains a significant challenge due to varying building sizes, occlusion by trees and unstable illumination. The convolutional neural network (CNN) model often loses high-frequency details such as target boundaries and fine structures. This makes the precise segmentation of buildings in remote sensing images a challenging problem. To solve this problem, this paper proposes a deep convolutional neural network model based on contour measurement. By introducing the Sobel edge detector, the network obtains additional edges to enhance the boundary of image segmentation in an unsupervised manner. In addition, a denoising module is incor-porated to suppress noise hidden in low-level features. During training, in addition to the commonly used Dice coefficient and cross-entropy loss, a contour constraint loss function is introduced to further enhance the edge information and preserve the geometric topology of the buildings. This method is tested on the remote sensing images of buildings from the Inria Aerial Image Labeling dataset and Massachusetts Buildings dataset. Experimental results show that the proposed model effectively captures the edge details of weak light and occluded targets, thereby improving the accuracy of building segmentation. The proposed model achieves an average intersection over union (IoU) of 0.7860 and 0.7655, and a boundary IoU of 0.7359 and 0.7168, respectively, indicating enhanced accuracy in both regional and edge-level evaluation.

Key words: remote sensing image, contour constraint, contour enhancement, feature denoising, convolution neural network

中图分类号: