|   [1] Wang H, Wang S. Cyber warfare: steganography vs. steganalysis [J]. Communication of ACM, 2004, 47(10): 76-82. 
[2] Fridrich J, Goljan M. Practical steganalysis of digital images-state of the art [C]//Security and Watermarking of Multimedia Contents IV, Proceedings of SPIE, 2002, 4675: 1-13. 
[3] Ker A D. Steganalysis of LSB matching in grayscale images [J]. IEEE Signal Processing Letters, 2005, 12(6): 441-444. 
[4] Huang F, Li B, Huang J. Attack LSB matching steganography by counting alteration rate of the number of neighborhood gray levels [C]//Proceedings of the 14th IEEE International Conference on Image Processing (ICIP), 2007: 401-404. 
[5] Zhang J, Zhang D. Detection of LSB matching steganography in decompressed images [J]. IEEE Signal Processing Letters, 2010, 17(2): 141-144. 
[6] Sallee P. Model-based methods for steganography and steganalysis [J]. International Journal of Image and Graphics, 2005, 5(1): 167-190. 
[7] Bohme R, Westfeld A. Breaking cauchy model-based JPEG steganography with first order statistics [C]//Proceedings of the 9th European Symposium on Research in Computer Security, LNCS, 2004, 3193: 125-140. 
[8] Yang C, Luo X, Liu F. Embedding ratio estimating for each bit plane of image [C]//Proceedings of the 11th Information Hiding Workshop,LNCS, 2009, 5806: 59-72. 
[9] Ker A D. Derivation of error distribution in least squares Steganalysis [J]. IEEE Transactions Information Forensics and Security, 2007, 2(2): 140-148. 
[10] Luo X, Wang D, Wang P, Liu F. A review on blind detection for image steganography [J]. Signal Processing, 2008, 88: 2138-2157. 
[11] Avc?bas I, Memon N, Sankur B. Steganalysis using image quality metrics [J]. IEEE Transactions Image Processing, 2003, 12(2): 221-229. 
[12] Pevny T, Fridrich J. Merging Markov and DCT features for multi-class JPEG steganalysis[C]//Security, Steganography, and Watermarking of Multimedia Contents IX, Proceedings of SPIE, 2007, 6505: 28-40. 
[13] Lyu S, Farid H. Steganalysis using higher-order image statistics [J]. IEEE Transactions Information Forensics and Security, 2006, 1(1): 111-119. 
[14] Lie W, Lin G. A Feature-based classification technique for blind image steganalysis [J]. IEEE Transactions Multimedia, 2005, 7(5): 1007-1020. 
[15] Pevny T, Fridrich J. Novelty detection in blind steganalysis [C]//Proceedings of the 10th ACM Multimedia and Security Workshop (MM & Sec), 2008, 167-176. 
[16] Brent T, Gilbert L, Gustafson C. A new blind method for detecting novel steganography[J]. Digital Investigation, 2006, 2(1): 50-70. 
[17] Cachin C. An information-theoretic model for steganography [J]. Information and Computation, 2004, 192(1): 41-56. 
[18] Wang Y, Moulin P. Perfectly secure steganography: capacity, error exponents, and code constructions[J]. IEEE Transactions Information Theory, 2008, 54(6): 2706-2722. 
[19] Ker A D. The ultimate steganalysis renchmark? [C]//Proceedings of the 9th ACM Multimedia and Security Workshop, 2007, 141-147. 
[20] Pevny T, Fridrich J. Benchmarking for steganography [C]//Proceedings of the 10th Information Hiding Workshop, LNCS, 2008, 5284: 251-267. 
[21] Ker A D. Estimating steganographic fisher information in real images [C]//Proceedings of the 11th Information Hiding Workshop,LNCS, 2009, 5806: 73-88. 
[22] Filler T, Fridrich J. Fisher information determines capacity of secure steganography[C]//Proceedings of the 11th Information Hiding Workshop,LNCS, 2009, 5806: 31-47. 
[23] Ker A D. Estimating the information theoretic optimal stego noise [C]//Proceedings of the 8th International Workshop on Digital Watermarking, LNCS, 2009, 5703: 184-198. 
[24] Orsdemir A, Altun H O, Sharma G, Bocko M F. Steganalysis-aware steganography: statistical indistinguishability despite high histortion [C]//Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, Proceedings of SPIE, 2008, 6819: 151-159. 
[25] Kodovsky J, Fridrich J. On completeness of feature spaces in blind steganalysis[C]//Proceedings of the 10th ACM Multimedia and Security Workshop (MM & Sec), 2008, 123-132. 
[26] Fridrich J, Soukal D. Matrix embedding for large payloads [J]. IEEE Transactions Information Forensics and Security, 2006, 1(3): 390-395. 
[27] Zhang R, Sachnev V, Kim H. Fast BCH syndrome coding for steganography [C]//Proceedings of the 11th Information Hiding Workshop, LNCS, 2009, 5806: 48-58. 
[28] Zhang X, Wang S. Dynamical running coding in digital steganography [J]. IEEE Signal Processing Letters, 2006, 13(3): 165-168. 
[29] Filler T, Judas J, Fridrich J. Minimizing embedding impact in steganography using Trelliscoded quantization [C]//Electronic Imaging, Media Forensics, and Security XII, Proceedings of SPIE, 2010, 7541: 1-14. 
[30] Zhang X, Wang S. Efficient steganographic embedding by exploiting modification direction [J]. IEEE Communication Letters, 2006, 10(11): 781-783. 
[31] Fridrich J, Lisonek P. Grid colorings in steganography [J]. IEEE Transactions Information Theory, 2007, 53(4): 1547-1549. 
[32] Li X, Yang B, Cheng D, Zeng T. A generalization of LSB matching [J]. IEEE Signal Processing Letters, 2009, 16(2): 69-72. 
[33] Willems F, Dijk M. Capacity and codes for embedding information in gray-scale signals [J]. IEEE Transactions Information Theory, 2005, 51(3): 1209-1214. 
[34] Fridrich J, Goljan M, Lisonek P, Soukal D. Writing on wet paper [J]. IEEE Transactions Signal Processing, 2005, 53(10): 3923-3935. 
[35] Zhang X, Zhang W, Wang S. Efficient double-layered steganographic embedding [J]. Electronics Letters, 2007, 43(8): 482-483. 
[36] Zhang W, Zhang X, Wang S. A double layered ‘plus-minus one' data embedding scheme [J]. IEEE Signal Processing Letters, 2007, 14(11): 848-851. 
[37] Zhang X, Zhang W,Wang S. Integrated encoding with high efficiency for digital steganography[J]. Electronics Letters, 2007, 43(22): 1191-1192. 
[38] Fridrich J, Filler T. Practical methods for minimizing embedding impact in steganography[C]//Electronic Imaging, Media Forensics, and Security IX, Proceedings of SPIE, 2007, 6050: 650502.1-15. 
[39] Zhang W, Zhang X, Wang S. Near-optimal codes for information embedding in gray-scale signals [J]. IEEE Transactions Information Theory, 2010, 56(3): 1262-1270. 
[40] Fridrich J. Asymptotic behavior of the ZZW embedding construction [J]. IEEE Transactions Information Forensics and Security, 2009, 4(1): 151-154. 
[41] Zhang W, Wang X. Generalization of the ZZW embedding construction for steganography [J]. IEEE Transactions Information Forensics and Security, 2009, 4(3): 564-569. 
[42] Zhang X. Efficient data hiding with plus-minus one or two [J]. IEEE Signal Processing Letters, 2010, 17(7): 635-638. 
[43] Wu D C, Tsai W H. A steganographic method for images by pixel-value differencing [J]. Pattern Recognition Letters, 2003, 24(9/10): 1613-1626. 
[44] Yang C H, Weng C Y, Wang S J, Sun H M. Adaptive data hiding in edge areas of images with spatial LSB domain systems [J]. IEEE Transactions Information Forensics and Security, 2008, 3(3): 488-497. 
[45] Luo W, Huang F, Huang J. Edge adaptive image steganography based on LSB matching revisited [J]. IEEE Transactions Information Forensics and Security, 2010, 5(2): 201-214. 
[46] Li X, Li B, Luo X, Yang B, Zhu R. Steganalysis of a PVD-based content adaptive image steganography [J]. Signal Processing, 2013, 93(9): 2529-2538. 
[47] Fridrich J, Goljan M, Soukal D. Wet paper codes with improved embedding efficiency [J]. IEEE Transactions Information Forensics and Security, 2006, 1(1): 102-110. 
[48] Filler T, Judas J, Fridrich J. Minimizing additive distortion in steganography using Syndrome-Trellis codes [J]. IEEE Transactions Information Forensics and Security, 2011, 6(3): 920-935. 
[49] Pevny T, Filler T, Bas P. Using high-dimensional image models to perform highly undetectable steganography [C]//Proceedings of the 12th Information HidingWorkshop, LNCS, 2010, 8948: 161-171. 
[50] Holub V, Fridrich J. Designing steganographic distortion using directional filters[C]//Proceedings of the 4th IEEE International Workshop on Information Forensics and Security (WIFS), 2012: 234-239. 
[51] Holub V, Fridrich J. Digital image steganography using universal distortion [C]//Proceedings of the 1st IEEE Information Hiding and Multimedia Security Workshop (IH & MMSec), 2013: 59-68. 
[52] Li B, Tan S, Wang M, Huang J. Investigation on cost assignment in spatial image steganography[J]. IEEE Transactions Information Forensics and Security, 2014, 9(8): 1264-1277. 
[53] Li B, Wang M, Huang J, Li X. A new cost function for spatial image steganography[C]//Proceedings of the 21th IEEE International Conference on Image Processing (ICIP), 2014: 4206-4210. 
[54] Li B, Wang M, Li X, Tan S, Huang J. A strategy of clustering modification directions in spatial image steganography [J]. IEEE Transactions Information Forensics and Security, 2015, 10(9): 1905-1917. 
[55] Fridrich J, Kodovsky J. Multivariate Gaussian model for designing additive distortion for steganography [C]//Proceedings of the 38th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013: 2949-2953. 
[56] Filler T, Fridrich J. Gibbs construction in steganography [J]. IEEE Transactions Information Forensics and Security, 2010, 5(4): 705-720. 
[57] Holub V, Fridrich J. Universal distortion design for steganography in an arbitrary domain[C]//EURASIP Journal on Information Security, 2014: 1-13. 
[58] Sedighi V, Cogranne R, Fridrich J. Content-adaptive steganography by minimizing statistical detectability [J]. IEEE Transactions Information Forensics and Security, 2016, 11(2): 221-234. 
[59] Wang C, Ni J. An efficient JPEG steganographic scheme based on the block–entropy of DCT coefficients [C]//Proceedings of the 37th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2012: 1785-1788. 
[60] Huang F, Huang J, Shi Y Q. New channel selection rule for JPEG steganography [J]. IEEE Transactions Information Forensics and Security, 2012, 7(4): 1181-1191. 
[61] Guo L, Ni J, Shi Y Q. An efficient JPEG steganographic scheme using uniform embedding[C]//Proceedings of the 4th IEEE InternationalWorkshop on Information Forensics and Security (WIFS), 2012: 169-174. 
[62] Huang F, Luo W, Huang J, Shi Y Q. Distortion function designing for JPEG steganography with uncompressed side-image [C]//Proceedings of the 1st ACM Information Hiding and Multimedia Security Workshop (IH & MM Sec), 2013: 69-76. 
[63] Guo L, Ni J, Shi Y Q. Uniform embedding for efficient JPEG steganography [J]. IEEE Transactions Information Forensics and Security, 2014, 9(5): 814-825. 
[64] Guo L, Ni J, Su W, Tang C. Using statistical image model for JPEG steganography uniform embedding revisited [J]. IEEE Transactions Information Forensics and Security, 2015, 10(12): 2669-2680. 
[65] Fridrich J. Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes [C]//Proceedings of the 6th International Workshop, LNCS, 2004, 3200: 67-81. 
[66] Avcibas I, Kharrazi M, Memon N D, Sankur B. Image steganalysis with binary similarity measures [J]. EURASIP Journal on Applied Signal Processing, 2005, 17: 2749-2757. 
[67] Pevny T, Fridrich J. Merging Markov and DCT features for multi-class JPEG steganalysis[C]//Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, Proceedings of SPIE, 2007, 6505: 3-4. 
[68] Shi Y Q, Chen C, Chen W. A Markov process based approach to effective attacking JPEG steganography [C]//Proceedings of the 8th International Workshop of Lecture Notes in Computer Science, LNCS, 2007, 4437: 249-264. 
[69] Lyu S W, Farid H. Steganalysis using higher-order image statistics [J]. IEEE Transactions Information Forensics and Security, 2006, 1(1): 111-119. 
[70] Luo X Y, Liu F L, Lian S G, Yang C F, Gritzalis S. On the typical statistic features for image blind steganalysis [J]. IEEE Journal of Selected Areas in Communications, 2011, 29(7): 1404-1422. 
[71] Kodovsky J, Fridrich J. Calibration revisited [C]//Proceedings of the 11th ACM Multimedia and Security Workshop (MM & Sec), 2009: 63-74. 
[72] Penvy T, Bas P, Fridrich J. Steganalysis by subtractive pixel adjacency matrix [J]. IEEE Transactions Information Forensics and Security, 2010, 5(2): 215-224. 
[73] Liu Q. Steganalysis of DCT-embedding based adaptive steganography and YASS [C]// Proceedings of the 13th ACM Multimedia and Security Workshop (MM & Sec), 2011: 77-86. 
[74] Kodovsky J, Pevny T, Fridrich J. Modern steganalysis can detect YASS [C]//Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents XII, Proceedings of SPIE, 2010, 7541: 201-211. 
[75] Kodovsky J, Fridrich J, Holub V. Ensemble classifiers for steganalysis of digital media [J]. IEEE Transactions Information Forensics and Security, 2012, 7(2): 432-444. 
[76] Kodovsky J, Fridrich J. Steganalysis of JPEG images using rich models [C]//Electronic Imaging, Media Watermarking, Security, and Forensics of Multimedia XIV, Proceedings of SPIE, 2012, 8303: 1-13. 
[77] Fridrich J, Kodovsky J. Rich models for steganalysis of digital images [J]. IEEE Transactions Information Forensics and Security, 2012, 7(3): 868-882. 
[78] Chen B, Feng G, Zhang X, Li F. Mixing high-dimensional features for JPEG steganalysis with ensemble classifier [J]. Signal, Image and Video Processing, 2014, 8(8): 1475-1482. 
[79] Li F, Zhang X, Chen B, Feng G. JPEG steganalysis with high-dimensional features and bayesian ensemble classifier [J]. IEEE Signal Processing Letters, 2013, 20(3): 233-236. 
[80] Holub V, Fridrich J. Low-complexity features for JPEG steganalysis using undecimated DCT[J]. IEEE Transactions Information Forensics and Security, 2015, 10(2): 219-228. 
[81] Cogranne R, Retraint F. An asymptotically uniformly nost powerful test for LSB matching detection [J]. IEEE Transactions Information Forensics and Security, 2013, 8(3): 464-476. 
[82] Zitzmann C, Cogranne R, Retraint F, Nikiforov I, Fillatre L, Cornu P. Statistical decision methods in hidden information detection [C]//Proceedings of the 13th International Workshop on Information Hiding, LNCS, 2011, 6958: 163-177. 
[83] Cogranne R, Retraint F, Zitzmann C, Nikiforov I, Fillatre L, Cornu P. Hidden information detection using decision theory and quantized samples: methodology, difficulties and results [J]. Digital Signal Processing, 2014, 24(1): 144-161. 
[84] Thai T H, Cogranne R, Retraint F. Statistical model of quantized DCT coefficients: application in the steganalysis of jsteg algorithm [J]. IEEE Transactions Image Processing, 2014, 23(5): 1980-1993. 
[85] Cogranne R, Denemark T, Fridrich J. Theoretical model of the FLD ensemble classifier based on hypothesis testing theory [C]//Proceedings of the 6th IEEE International Workshop on Information Forensics and Security (WIFS), 2014. 
[86] Cogranne R, Fridrich J. Modeling and extending the ensemble classifier for steganalysis of digital images using hypothesis testing theory [J]. IEEE Transactions Information Forensics and Security, 2015, 10(12): 2627-2642. 
[87] Ker A D. Batch steganography and pooled steganalysis [C]//Proceedings of the 8th Information Hiding Workshop, LNCS, 2006, 4437: 265-281. 
[88] Ker A D. Batch steganography and the threshold game [C]//Security, Steganography, and Watermarking of Multimedia Contents IX, Proceedings SPIE, 2007, 6505: 401-413. 
[89] Ker A D. A capacity result for batch steganography [J]. IEEE Signal Processing Letters, 2007, 14(8): 525-528. 
[90] Ker A D, Pevny T, Kodovsky J, Fridrich J. The square root law of steganographic capacity[C]//Proceedings of the 10th ACM Multimedia and Security Workshop (MM & Sec), 2008: 107-116. 
[91] Filler T, Ker A D, Fridrich J. The square root law of steganographic capacity for markov covers [C]//Security, Steganography, andWatermarking of Multimedia Contents XI, Proceedings of SPIE, 2009, 7254: 18-22. 
[92] Ker A D. Steganographic strategies for a square distortion function [C]//Security, Steganography, and Watermarking of Multimedia Contents X, Proceedings of SPIE, 2008, 6819: 681904.1- 13. 
[93] Ker A D. Perturbation hiding and the batch steganography problem [C]//Proceedings of the 10th International Workshop on Information Hiding, LNCS, 2008, 5284: 45-59. 
[94] Ker A, Pevny T. A new paradigm for steganalysis via clustering [C]//Media Watermarking, Security, and Forensics III,Proceedings of SPIE, 2011: 7880. 
[95] Ker A, Pevny T. Identifying a steganographer in realistic and heterogeneous data sets[C]//Media Watermarking, Security, and Forensics, Proceedings of SPIE, 2012: 8303. 
[96] Ker A, Pevny T. Batch steganography in the real world [C]//Proceedings of the 14th ACM Multimedia and Security Workshop, 2012: 1-10. 
[97] Ker A, Pevny T. The Steganographer is the outlier: realistic large-scale steganalysis [J]. IEEE Transactions Information Forensics and Security, 2014, 9(9): 1424-1435. 
[98] Li F, Wu K, Lei J, Wen M, Bi Z, Gu C. Steganalysis over large-scale social networks with high-order joint features and clustering ensembles [J]. IEEE Transactions Information Forensics and Security, 2016, 11(2): 344-357. 
[99] Fridrich J. Steganography in digital media: principles, algorithms, and applications [M]. Cambridge, UK: Cambridge University Press, 2010. 
[100] Petrowski K. Psteg: steganographic embedding through patching [C]//Proceedings of the 30th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2005, 537-540. 
[101] Wayner P. Mimic functions [J]. Cryptologia, 1992, 16(3): 193-214. 
[102] 王朔中,张新鹏,张开文. 数字密写与密写分析[M]. 北京:清华大学出版社,2005. 
[103] 刘粉林,刘九芬,罗向阳. 数字图像隐写分析[M]. 北京:机械工业出版社,2010. 
[104] 杨榆,钮心忻. 信息隐藏与数字水印教程[M]. 北京:国防工业出版社,2012. 
[105] Fridrich著. 数字媒体中的隐写术—原理、算法和应用[M]. 张涛,奚玲,张彦,许漫坤译,平西 建校. 北京:国防工业出版社,2014. 
[106] Efros A. A, FreemanWT. Image quilting for texture synthesis and transfer [C]//Proceedings of 28th Annual Conference Computer Graphics Interactive Techniques, SIGGRAPH 2001: 341- 346. 
[107] Ashikhmin M. Synthesizing natural textures [C]//Proceedings of the symposium on Interactive 3D Graphics, ACM Press, 2001: 217-226. 
[108] Kwatra V. Texture optimization for example-based synthesis [J]. ACM Transactions Graphics, 2005, 24(3): 795-802. 
[109] Dong F, Ye X. Multiscaled texture synthesis using multisized pixel neighborhoods [J]. IEEE Computer Graphics and Applications, 2007: 41-47. 
[110] Otori H, Kuriyama S. Data-embeddable texture synthesis [C]//Proceedings of the 8th International Symposium on Smart Graphics, Kyoto, Japan, 2007, 146-157. 
[111] Otori H, Kuriyama S. Texture synthesis for mobile data communications [J]. IEEE Computer Graphics and Applications, 2009, 29(6): 74-81. 
[112] Wu K C, Wang C M. Steganography using reversible texture synthesis [J]. IEEE Transactions Image Processing, 2015, 24(1): 130-139. 
[113] Zhou H, Chen K, Zhang W, Yu N. Comments on steganography using reversible texture synthesis [C]//IEEE Transactions Image Processing, 2016, accepted. 
[114] Qian Z, Zhou H, Zhang W, Zhang X. Robust steganography using texture synthesis[C]//Proceedings of the 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2016), 2016, accepted. 
[115] Xu J, Mao X, Jin X. Hidden message in a deformation-based texture [J]. Visual Computer, 2015, 31: 1653-1669. 
[116] 潘琳,钱振兴,张新鹏,基于构造纹理图像的数字隐写,应用科学学报,2016, 34(5): 625-632. Pan L, Qian Z X, Zhang X P. Steganography by constructing texture images [J]. Journal of Applied Sciences, 2016, 34(5): 625-632. (in Chinese) 
[117] Larkin K G, Fletcher P A. A coherent framework for fingerprint analysis: are fingerprints holograms? [J]. Optics Express, 2007, 15: 8667-8677. 
[118] Zhang X. Behavior steganography in social network [C]//Proceedings of the 12th International Conference on Intelligent Information Hiding andMultimedia Signal Processing (IIH-MSP 2016), 2016, accepted.  |