应用科学学报 ›› 2019, Vol. 37 ›› Issue (1): 41-50.doi: 10.3969/j.issn.0255-8297.2019.01.005

• 信号与信息处理 • 上一篇    下一篇

降低特征类内离散度的JPEG图像隐写分析

汪然1,2, 牛少彰2, 平西建1, 张涛1, 桑晓丹3   

  1. 1. 信息工程大学 信息系统工程学院, 郑州 450001;
    2. 北京邮电大学 计算机学院, 北京 100876;
    3. 解放军31401部队, 济南 250002
  • 收稿日期:2017-09-24 修回日期:2018-04-10 出版日期:2019-01-31 发布日期:2019-01-31
  • 作者简介:汪然,博士,讲师,研究方向:图像处理、多媒体信息安全,E-mail:nemo2007@163.com;牛少彰,教授,研究方向:信息安全,E-mail:szniu@bupt.edu.cn;平西建,教授,博导,研究方向:图像处理、信息安全,E-mail:pingxijian@163.com
  • 基金资助:

    国家自然科学基金(No.61602511,No.61572518,No.U1636202)资助

Steganalysis of JPEG Images Based on Reducing Between-Class Scatter

WANG Ran1,2, NIU Shao-zhang2, PING Xi-jian1, ZHANG Tao1, SANG Xiao-dan3   

  1. 1. Institute of Information System and Engineering, Information Engineering University, Zhengzhou 450001, China;
    2. School of Computer Science & Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    3. Troops 31401 PLA, Jinan 250002, China
  • Received:2017-09-24 Revised:2018-04-10 Online:2019-01-31 Published:2019-01-31

摘要:

图像内容特征差异使得载体、载密图像的隐写检测特征混淆在一起而难以区分,这导致图像隐写分析成了一个"类内分散、类间聚合"的分类问题.针对此问题,从降低因图像内容、处理手段等造成的隐写检测特征类内离散度的角度出发,提出了一种更加可靠的隐写检测模型.依据内容复杂度将待检测图像分类,分别提取具有相同内容复杂度的每一类图像的隐写检测特征和训练分类器,得到最终检测结果.数据分析和实验结果表明:基于图像分类的隐写分析方法能够有效提高检测性能.

关键词: 图像分类, 隐写分析, 类内离散度, 图像内容复杂度

Abstract:

Compared with the process of embedding, image contents make a more significant impact on the differences of image statistical characteristics. This makes the image steganalysis to be a classification problem with bigger within-class scatter distances and smaller between-class scatter distances. In this paper, a new steganalysis framework which can reduce the differences of image statistical characteristics caused by various content and processing methods is proposed. The given images are classified according to the texture complexity. Steganalysis features are separately extracted from each subset with the same or close complexity evaluation function to build a classifier. The theoretical analysis and experimental results can demonstrate the validity of the proposed framework.

Key words: steganalysis, between-class scatter, image classification, image content complexity

中图分类号: