应用科学学报 ›› 2019, Vol. 37 ›› Issue (4): 490-500.doi: 10.3969/j.issn.0255-8297.2019.04.006

• 信号与信息处理 • 上一篇    下一篇

基于深度图像分析的细粒度矿石分级测定方法

卢才武, 齐凡, 阮顺领   

  1. 西安建筑科技大学 管理学院, 西安 710055
  • 收稿日期:2018-06-12 修回日期:2018-12-21 出版日期:2019-07-31 发布日期:2019-10-11
  • 作者简介:卢才武,教授,博导,研究方向:图像检测、模式识别及矿业系统工程,E-mail:xjdkslu@163.com
  • 基金资助:
    国家自然科学基金(No.51774228);陕西省自然科学基金(No.2017JM5043)资助

Grade Determination of Fine Grain Ore Based on Depth Image Analysis

LU Caiwu, QI Fan, RUAN Shunling   

  1. School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • Received:2018-06-12 Revised:2018-12-21 Online:2019-07-31 Published:2019-10-11

摘要: 针对图像处理技术在细粒度矿石分级测定时存在的精度不足问题,提出基于深度图像分析的分级测定方法.在灰度共生矩阵(gray-level co-occurrence matrix,GLCM)的基础上提出点对生成步长与图像灰度压缩等级的自适应选取方法,通过网格搜索与交叉验证来优化支持向量机(support vector machine,SVM)分类器,提高粒度测定精度.实验结果表明,该方法对0~0.9 mm、0.9~3.0 mm、3.0~5.0 mm、5.0~7.0 mm这4种等级的细粒度矿石分级准确率可达92%以上,能够充分满足细粒度矿石分级测定的要求.

关键词: 矿石粒度, 纹理提取, 图像分类, 灰度共生矩阵, 最大线性离散度

Abstract: To improve the precision of image processing technology in fine-grained ore measurement, a grading determination method based on depth image analysis is proposed. On the basis of gray-level co-occurrence matrix (GLCM), a maximum linear dispersion method is proposed to generate the step size and gray-level compression level adaptively, and support vector machine (SVM) classifiers are optimized through grid search and crossvalidation thus to improve the accuracy of particle size measurement. Experimental results showed that this method can achieve an accuracy rate of more than 92% for fine-grained ores with particle sizes of 0~0.9 mm, 0.9~3.0 mm, 3.0~5.0 mm and 5.0~7.0 mm, which can fully meet the requirements of grading and determining fine-grained ores.

Key words: ore grain size, texture extraction, image classification, gray-level co-occurrence matrix, maximum linear dispersion

中图分类号: