Journal of Applied Sciences ›› 2022, Vol. 40 ›› Issue (1): 25-35.doi: 10.3969/j.issn.0255-8297.2022.01.003
• Special Issue on Computer Applications • Previous Articles Next Articles
WANG Kaixin1,2, XU Xiujuan1,2, LIU Yu1,2, ZHAO Zhehuan1,2, ZHAO Xiaowei1,2
Received:
2021-07-25
Published:
2022-01-28
CLC Number:
WANG Kaixin, XU Xiujuan, LIU Yu, ZHAO Zhehuan, ZHAO Xiaowei. Static Multimodal Sentiment Analysis of Online Reviews[J]. Journal of Applied Sciences, 2022, 40(1): 25-35.
[1] 张亚洲, 戎璐, 宋大为, 等. 多模态情感分析研究综述[J]. 模式识别与人工智能, 2020, 33(5):426-438. Zhang Y Z, Rong L, Song D W, et al. A survey on multimodal sentiment analysis[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(5):426-438. (in Chinese) [2] 潘家辉, 何志鹏, 李自娜, 等. 多模态情绪识别研究综述[J]. 智能系统学报, 2020, 84(4):7-19. Pan J H, He Z P, Li Z N, et al. A review of multimodal emotion recognition[J]. CAAI Transactions on Intelligent Systems, 2020, 84(4):7-19. (in Chinese) [3] Zadeh A, Chen M, Poria S, et al. Tensor fusion network for multimodal sentiment analysis[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017:1103-1114. [4] Chen M H, Wang S, Liang P P, et al. Multimodal sentiment analysis with word-level fusion and reinforcement learning[C]//Proceedings of the 19th ACM International Conference on Multimodal Interaction, Glasgow, UK, 2017:163-171. [5] Cao D, Ji R, Lin D, et al. A cross-media public sentiment analysis system for microblog[J]. Multimedia Systems, 2016, 22(4):479-486. [6] Yu Y, Lin H, Meng J, et al. Visual and textual sentiment analysis of a microblog using deep convolutional neural networks[J]. Algorithms, 2016, 9(2):41-52. [7] Li Z H, Fan Y Y, Liu W H, et al. Image sentiment prediction based on textual descriptions with adjective noun pairs[J]. Multimedia Tools and Application, 2018, 77(1):1115-1132. [8] 蔡国永, 夏彬彬. 基于卷积神经网络的图文融合媒体情感预测[J]. 计算机应用, 2016, 36(2):428-431. Cai G Y, Xia B B. Multimedia sentiment analysis based on convolutional neural network[J]. Journal of Computer Applications, 2016, 36(2):428-431. (in Chinese) [9] Xu N, Mao W J. MultiSentiNet:a deep semantic network for multimodal sentiment analysis[C]//Proceedings of 2017 ACM on Conference on Information and Knowledge Management, Singapore, 2017:2399-2402. [10] Truong T Q, Lauw H W. VistaNet:visual aspect attention network for multimodal sentiment analysis[C]//Proceedings of AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019:305-312. [11] Huang F, Zhang X, Zhao Z, et al. Image-text sentiment analysis via deep multimodal attentive fusion[J]. Knowledge-Based Systems, 2019, 167:26-37. [12] 林敏鸿, 蒙祖强. 基于注意力神经网络的多模态情感分析[J]. 计算机科学, 2020, 47(增刊2):518-524, 558. Lin M H, Meng Z Q. Multimodal sentiment analysis based on attention neural network[J]. Computer Science, 2020, 47(Suppl. 2):518-524, 558. (in Chinese) [13] Tang G, Müller M, Rios A, et al. Why self-attention? a targeted evaluation of neural machine translation architectures[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018:4263-4272. [14] Vaswani A, Bengio S, Brevdo E, et al. Tensor2Tensor for neural machine translation[C]//Proceedings of the 13th Conference of the Association for Machine Translation in Americas, Boston, USA, 2018:193-199. [15] Wang Q, Li B, Xiao T, et al. Learning deep transformer models for machine translation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019:1810-1822. [16] Xiong R, Yang Y, He D, et al. On layer normalization in the transformer architecture[C]//Proceedings of the Thirty-Seventh International Conference on Machine Learning, Virtual, 2020:10524-10533. [17] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015:1-14. [18] Pennington J, Socher R, Manning C D. Glove:global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014:1532-1543. [19] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016:770-778. |
[1] | ZHOU Chuanhua, XU Wenqian, ZHU Junjie. Ensemble Classification Algorithm Based on Cost Sensitive Convolutional Neural Networks [J]. Journal of Applied Sciences, 2022, 40(1): 69-79. |
[2] | WEI Mingjun, ZHOU Taiyu, JI Zhanlin, ZHANG Xinnan. Mask Wearing Detection in Complex Scenes Based on Mask-YOLO [J]. Journal of Applied Sciences, 2022, 40(1): 93-104. |
[3] | LEI Qianhui, PAN Lili, SHAO Weizhi, HU Haipeng, HUANG Yao. Segmentation Model of COVID-19 Lesions Based on Triple Attention Mechanism [J]. Journal of Applied Sciences, 2022, 40(1): 105-115. |
[4] | WANG Peng, ZHENG Wenfeng, SHI Jin, JIN Shuo, LIU Zihao. Remote Sensing Image Object Detection Based on MFANet and Contextual Features Fusion [J]. Journal of Applied Sciences, 2022, 40(1): 131-144. |
[5] | JI Deqiang, WANG Hairong, CHE Miao, WANG Jiaxin. KNN-GWD Recommendation Model and Its Application [J]. Journal of Applied Sciences, 2022, 40(1): 145-154. |
[6] | LIU Xinghong, WANG Ying, WANG Xin, LAN Shumei. Heterogeneous Information Network Representation Learning Based on Generative Adversarial Network [J]. Journal of Applied Sciences, 2021, 39(4): 532-544. |
[7] | JIANG Wenxuan, DUAN Youxiang, SUN Qifeng. Hybrid Feature Selection Algorithm Based on Mutual Information [J]. Journal of Applied Sciences, 2021, 39(4): 545-558. |
[8] | ZHENG Changliang, PANG Ming. Spatial-Temporal Weight Attitude Motion Feature Extraction Algorithm Using Convolutional Neural Network [J]. Journal of Applied Sciences, 2021, 39(4): 594-604. |
[9] | ZHANG Xiaolong, WANG Qingwei, LI Shangbin. Recognition Method of Human Dangerous Behavior in Multimodal Scenes Using Reinforcement Learning [J]. Journal of Applied Sciences, 2021, 39(4): 605-614. |
[10] | LAI Yibin, LU Shenglian, QIAN Tingting, SONG Zhen, CHEN Ming. Three-Dimensional Point Cloud Segmentation for Plants [J]. Journal of Applied Sciences, 2021, 39(4): 660-671. |
[11] | GUO Yubo, LU Jun, DUAN Pengqi. Automatic Classification of Bamboo Flute Playing Skills Based on Deep Learning [J]. Journal of Applied Sciences, 2021, 39(4): 685-694. |
[12] | HAO Yan, SHI Huiyu, HUO Shoujun, HAN Dan, CAO Rui. Emotion Classification Based on EEG Deep Learning [J]. Journal of Applied Sciences, 2021, 39(3): 347-346. |
[13] | SIMA Yi, YI Jizheng, CHEN Aibin, ZHOU Mengna. Fully Expression Frame Localization and Recognition Based on Dynamic Face Image Sequences [J]. Journal of Applied Sciences, 2021, 39(3): 357-356. |
[14] | DU Chengze, DUAN Youxiang, SUN Qifeng. Seismic Fault Identification Method Based on ResUNet and Dense CRF Model [J]. Journal of Applied Sciences, 2021, 39(3): 367-366. |
[15] | YU Qun, ZHANG Jianxin, WEI Xiaopeng, ZHANG Qiang. Cascaded Separable and Dilated Residual U-Net for Liver Tumor Segmentation [J]. Journal of Applied Sciences, 2021, 39(3): 378-377. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||