[1] Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. [2] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. [3] Qin Z, Zeng Q, Zong Y, et al. Image inpainting based on deep learning: a review [J]. Displays, 2021, 69: 102028. [4] Lei Y, Fu Y, Wang T, et al. Deep learning in multi-organ segmentation [DB/OL]. 2020[2023- 05-29]. https://arxiv.org/abs/2001.10619. [5] 田娟秀, 刘国才, 谷珊珊, 等. 医学图像分析深度学习方法研究与挑战[J]. 自动化学报, 2018, 44(3): 401-424. Tian J X, Liu G C, Gu S S, et al. Deep learning in medical image analysis and its challenges [J]. Acta Automatica Sinica, 2018, 44(3): 401-424. (in Chinese) [6] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440. [7] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation [C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, 2015: 234-241. [8] Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet plus plus: a nested U-Net architecture for medical image segmentation [C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018: 3-11. [9] Huang H, Lin L, Tong R, et al. UNet 3+: a full-scale connected UNet for medical image segmentation [C]//2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020: 1055-1059. [10] Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: learning where to look for the pancreas [DB/OL]. 2018[2023-05-29]. https://arxiv.org/abs/1804.03999. [11] Jha D, Smedsrud P H, Riegler M A, et al. ResUNet plus plus: an advanced architecture for medical image segmentation [C]//IEEE International Symposium on Multimedia (ISM), 2019: 225-2255. [12] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]//31st Annual Conference on Neural Information Processing Systems (NIPS), 2017, 30: 1-11 [13] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: transformers for image recognition at scale [DB/OL]. 2020[2023-05-29]. https://arxiv.org/abs/2010.11929. [14] Chen J, Lu Y, Yu Q, et al. TransUNet: transformers make strong encoders for medical image segmentation [DB/OL]. 2021[2023-05-29]. https://arxiv.org/abs/2102.04306. [15] Cao H, Wang Y, Chen J, et al. Swin-UNet: UNet-like pure transformer for medical image segmentation [C]//Computer Vision-ECCV 2022 Workshops, 2023: 205-218. [16] 郭朝鹏, 王馨昕, 仲昭晋, 等. 能耗优化的神经网络轻量化方法研究进展[J]. 计算机学报, 2023, 46(1): 85-102. Guo C P, Wang X X, Zhong Z J, et al. Research advance on neural network lightweight for energy optimization [J]. Chinese Journal of Computers, 2023, 46(1): 85-102. (in Chinese) [17] Chollet F. Xception: deep learning with depthwise separable convolutions [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258. [18] Howard A G, Zhu M, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [DB/OL]. 2017[2023-05-29]. https://arxiv.org/abs/1704.04861. [19] Sandler M, Howard A, Zhu M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]//31st IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510- 4520. [20] Howard A, Sandler M, Chu G, et al. Searching for mobileNetV3[C]//IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324. [21] Zhang X, Zhou X, Lin M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices [C]//31st IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856. [22] Ma N, Zhang X, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design [C]//European Conference on Computer Vision (ECCV), 2018: 116-131. [23] Valanarasu J M J, Patel V M. UneXt: MLP-based rapid medical image segmentation network [C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2022, 2022: 23-33. [24] Han K, Wang Y, Tian Q, et al. GhostNet: more features from cheap operations [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589. [25] Wang Q, Wu B, Zhu P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542. [26] Tolstikhin I O, Houlsby N, Kolesnikov A, et al. MLP-mixer: an all-MLP architecture for vision [C]//35th Annual Conference on Neural Information Processing Systems (NeurIPS), 2021, 34: 24261-24272. [27] Lian D, Yu Z, Sun X, et al. AS-MLP: an axial shifted MLP architecture for vision [DB/OL]. 2021[2023-05-29]. https://arxiv.org/abs/2107.08391. [28] Xu Q, Ma Z, Na H E, et al. DCSAU-Net: a deeper and more compact split-attention U-Net for medical image segmentation [J]. Computers in Biology and Medicine, 2023, 154: 106626. |