[1] Cheng H D, Shi X J. A simple and effective histogram equalization approach to image enhancement [J]. Digital Signal Processing, 2004, 14(2): 158-170. [2] Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes [J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976. [3] Guo X J, Li Y, Ling H B. LIME: low-light image enhancement via illumination map estimation [J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993. [4] Zhao Z J, Xiong B S, Wang L, et al. RetinexDIP: a unified deep framework for low-light image enhancement [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1076-1088. [5] Liu R S, Ma L, Zhang J A, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 10556-10565. [6] Wu W H, Weng J, Zhang P P, et al. URetinex-net: retinex-based deep unfolding network for low-light image enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5891-5900. [7] Feng W, Wu G M, Zhou S Q, et al. Low-light image enhancement based on Retinex-Net with color restoration [J]. Applied Optics, 2023, 62(25): 6577-6584. [8] Dong X, Pang Y A, Wen J G. Fast efficient algorithm for enhancement of low lighting video [DB/OL]. 2010[2023-11-15]. https://dl.acm.org/doi/10.1145/1836845.1836920. [9] Park D, Kim M, Ku B, et al. Image enhancement for extremely low light conditions [C]//11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2014: 307-312. [10] Yang Y, Wang C Y, Liu R S, et al. Self-augmented unpaired image dehazing via density and depth decomposition [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 2027-2036. [11] Jiang Y F, Gong X Y, Liu D, et al. EnlightenGAN: deep light enhancement without paired supervision [J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. [12] Zhang Y, Di X G, Zhang B, et al. Self-supervised low light image enhancement and denoising [DB/OL]. 2021[2023-11-15]. http://arxiv.org/abs/2103.00832. [13] Wang Y F, Wan R J, Yang W H, et al. Low-light image enhancement with normalizing flow [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(3): 2604-2612. [14] Liang D, Li L, Wei M Q, et al. Semantically contrastive learning for low-light image enhancement [J]. AAAI Conference on Artificial Intelligence, 2022, 36(2): 1555-1563. [15] Bychkovsky V, Paris S, Chan E, et al. Learning photographic global tonal adjustment with a database of input/output image pairs [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2011: 97-104. [16] Zeng H, Cai J R, Li L D, et al. Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 2058-2073. [17] He J W, Liu Y H, Qiao Y, et al. Conditional sequential modulation for efficient global image retouching [C]//European Conference on Computer Vision, 2020: 679-695. [18] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]// 31st International Conference on Neural Information Processing Systems. Red Hook, 2017: 6000-6010. [19] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale [DB/OL]. 2020[2023-11-15]. http://arxiv.org/abs/2010.11929. [20] Cui Z T, Li K C, Gu L, et al. You only need 90K parameters to adapt light: a light weight transformer for image enhancement and exposure correction [DB/OL]. 2022[2023-11- 15]. http://arxiv.org/abs/2205.14871. [21] Cai Y H, Bian H, Lin J, et al. Retinexformer: one-stage retinex-based transformer for low-light image enhancement [DB/OL]. 2023[2023-11-15]. http://arxiv.org/abs/2303.06705. [22] Guo C L, Li C Y, Guo J C, et al. Zero-reference deep curve estimation for low-light image enhancement [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 1777-1786. [23] Ma L, Ma T Y, Liu R S, et al. Toward fast, flexible, and robust low-light image enhancement [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5627-5636. [24] Hu J, Shen L, Sun G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 7132-7141. [25] Jaderberg M, Simonyan K, Zisserman A, et al. Spatial transformer networks [DB/OL]. 2015[2023-11-15]. http://arxiv.org/abs/1506.02025. [26] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module [C]//European Conference on Computer Vision, 2018: 3-19. [27] Hu Y M, He H, Xu C X, et al. Exposure: a white-box photo post-processing framework [DB/OL]. 2017[2023-11-15]. http://arxiv.org/abs/1709.09602. [28] Hwang S J, Kapoor A, Kang S B. Context-based automatic local image enhancement [C]//European Conference on Computer Vision, 2012: 569-582. |