[1] 钟华, 王滨, 张雪梅. 影响脑血管造影图像质量因素的探讨[J]. 新疆医科大学学报, 2009, 32(8): 1151-1152. Zhong H, Wang B, Zhang X M. A study of factors affecting the image quality of cerebral angiography [J]. Journal of Xinjiang Medical University, 2009, 32(8): 1151-1152. (in Chinese) [2] Tummala S, Thadikemalla V S G, Kadry S, et al. EfficientNetV2 based ensemble model for quality estimation of diabetic retinopathy images from DeepDRiD [J]. Diagnostics, 2023, 13(4): 622. [3] Shi C Y, Lee J, Wang G C, et al. Assessment of image quality on color fundus retinal images using the automatic retinal image analysis [J]. Scientific Reports, 2022, 12(1): 10455. [4] Hu J H, Zhang C Y, Zhou K, et al. Chest X-ray diagnostic quality assessment: how much is pixel-wise supervision needed? [J]. IEEE Transactions on Medical Imaging, 2022, 41(7): 1711- 1723. [5] Chen X, Deng Q S, Wang Q, et al. Image quality control in lumbar spine radiography using enhanced U-net neural networks [J]. Frontiers in Public Health, 2022, 10: 891766. [6] Meng C, Sun K, Guan S Y, et al. Multiscale dense convolutional neural network for DSA cerebrovascular segmentation [J]. Neurocomputing, 2020, 373: 123-134. [7] Cui Y, Su J J, Zhu J, et al. Spatial multi-scale attention U-improved network for blood vessel segmentation [J]. Signal, Image and Video Processing, 2023, 17(6): 2857-2865. [8] Laibacher T, Weyde T, Jalali S. M2U-Net: effective and efficient retinal vessel segmentation for real-world applications [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019: 115-124. [9] Bai R F, Liu X R, Jiang S, et al. Deep learning based real-time semantic segmentation of cerebral vessels and cranial nerves in microvascular decompression scenes [J]. Cells, 2022, 11(11): 1830. [10] Xu Z W, Zou B J, Liu Q. A deep retinal image quality assessment network with salient structure priors [J]. Multimedia Tools and Applications, 2023, 82(22): 34005-34028. [11] Wang Z W, Song Y X, Zhao B L, et al. A soft-reference breast ultrasound image quality assessment method that considers the local lesion area [J]. Bioengineering, 2023, 10(8): 940. [12] Ruder S. An overview of multi-task learning in deep neural networks [DB/OL]. (2017-06-15) [2024-01-07]. https://arxiv.org/abs/1706.05098v1. [13] Xu Q, Zeng Y, Tang W J, et al. Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network [J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(9): 2481-2489. [14] Howard A G, Zhu M L, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [DB/OL]. (2017-04-17) [2024-01-07]. https://arxiv.org/abs/1704.04861v1. [15] Tan M X, Le Q V. EfficientNet: rethinking model scaling for convolutional neural networks [DB/OL]. (2019-05-28) [2024-01-07]. https://arxiv.org/abs/1905.11946v5. [16] Liu Z, Lin Y T, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows [C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 9992-10002. [17] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation [C]//18th International Conference on Medical Image Computing and ComputerAssisted Intervention (MICCAI), 2015: 234-241. [18] Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: learning where to look for the pancreas [DB/OL]. (2018-05-20) [2024-01-07]. https://arxiv.org/abs/1804.03999v3. [19] Vandenhende S, Georgoulis S, Van Gansbeke W, et al. Multi-task learning for dense prediction tasks: a survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3614-3633. [20] Guo C L, Szemenyei M, Yi Y G, et al. SA-UNet: spatial attention U-net for retinal vessel segmentation [C]//202025th International Conference on Pattern Recognition (ICPR), 2021: 1236-1242. [21] Chen J N, Lu Y Y, Yu Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation [DB/OL]. (2021-02-08) [2024-01-07]. https://arxiv.org/abs/2102.04306v1. [22] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778. [23] Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization [C]//2017 IEEE/CVF International Conference on Computer Vision (ICCV), 2017: 618-626. |