Journal of Applied Sciences ›› 2025, Vol. 43 ›› Issue (1): 137-153.doi: 10.3969/j.issn.0255-8297.2025.01.010
• Special Issue on Computer Application • Previous Articles Next Articles
WANG Yingxiao, YANG Yanhong, TAN Yunfeng
Received:
2024-07-17
Online:
2025-01-30
Published:
2025-01-24
CLC Number:
WANG Yingxiao, YANG Yanhong, TAN Yunfeng. Video-Based Facial Feature Computation Methods[J]. Journal of Applied Sciences, 2025, 43(1): 137-153.
[1] Omarov B, Omarov B, Shekerbekova S, et al. Applying face recognition in video surveillance security systems [C]//International Conference on Software Technology: Methods and Tools, 2019: 271-280. [2] Suma V. Computer vision for human-machine interaction-review [J]. Journal of Trends in Computer Science and Smart technology, 2019(2): 131-139. [3] Dharrao D S, Uke N J. Fractional krill-lion algorithm based actor critic neural network for face recognition in real time surveillance videos [J]. International Journal of Computational Intelligence and Applications, 2019, 18(2): 1950011. [4] 朱国华, 徐昆. HOG的一种改进算法在人脸检测上的应用[J]. 计算机仿真, 2021, 38(9): 185-189. Zhu G H, Xu K. An improved HOG algorithm for face detection application [J]. Computer Simulation, 2021, 38(9): 185-189. (in Chinese) [5] Akbay Y O, Mitrea M. Face detection and recognition in organic video: a comparative study for sport celebrities database [J]. Electronic Imaging, 2022, 34(10): 355-1-355-6. [6] Li Q, Guo N, Ye X, et al. Video face recognition system: retinaface-mnet-faster and secondary search [C]//Advances in Information and Communication: Proceedings of the 2021 Future of Information and Communication Conference (FICC), 2021: 625-636. [7] Abed R, Bahroun S, Zagrouba E. KeyFrame extraction based on face quality measurement and convolutional neural network for efficient face recognition in videos [J]. Multimedia Tools and Applications, 2021, 80(15): 23157-23179. [8] 崔希, 刘首明. 基于朴素贝叶斯算法的智能电厂监控夜间视频人脸识别方法[J]. 电子测试, 2021(24): 44-46. Cui X, Liu S M. Face recognition method of intelligent power plant monitoring night video based on Naive Bayes algorithm [J]. Electronic Test, 2021(24): 44-46. (in Chinese) [9] 吕婧淑, 操晓春, 杨培. 基于区块链和人脸识别的双因子身份认证模型[J]. 应用科学学报, 2019, 37(2): 164-178. Lyu J S, Cao X C, Yang P. Two-factor identity authentication model based on blockchain and face recognition [J]. Journal of Applied Sciences, 2019, 37(2): 164-178. (in Chinese) [10] Tsai T H, Tsai C E, Chi P T. A one-shot face detection and recognition using deep learning method for access control system [J]. Signal, Image and Video Processing, 2023, 17(4): 1571- 1579. [11] Yoganand A V, Kavida A C, Rukmanidevi D. An efficient PCA based pose and occlusion invariant face recognition system for video surveillance [J]. Cluster Computing, 2019, 22(5): 11443-11456. [12] Li C, Wen C L, Qiu Y T. A video sequence face expression recognition method based on squeeze-and-excitation and 3DPCA network [J]. Sensors, 2023, 23(2): 823. [13] Greche L, Akil M, Kachouri R, et al. A new pipeline for the recognition of universal expressions of multiple faces in a video sequence [J]. Journal of Real-Time Image Processing, 2020, 17(5): 1389-1402. [14] Karpagam M, Jeyavathana R B, Chinnappan S K, et al. A novel face recognition model for fighting against human trafficking in surveillance videos and rescuing victims [J]. Soft Computing, 2023, 27(18): 13165-13180. [15] Wang H, Zhang D S, Miao Z H. Face recognition with single sample per person using HOGLDB and SVDL [J]. Signal, Image and Video Processing, 2019, 13(5): 985-992. [16] Lucey P, Cohn J F, Kanade T, et al. The extended Cohn-Kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression [C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 94-101. [17] Zhao W, Chellappa R, Phillips P J, et al. Face recognition: a literature survey [J]. ACM Computing Surveys (CSUR), 2003, 35(4): 399-458. [18] 郑秋文, 刘惠义. 结合深度Q学习和注意模型的视频人脸识别[J]. 信息技术, 2019, 43(4): 111-115, 120. Zheng Q W, Liu H Y. Video face recognition combined with depth Q learning and attention model [J]. Information Technology, 2019, 43(4): 111-115, 120. (in Chinese) [19] Moustafa A A, Elnakib A, Areed N F F. Age-invariant face recognition based on deep features analysis [J]. Signal, Image and Video Processing, 2020, 14(5): 1027-1034. [20] Shan X X, Lu Y, Li Q L, et al. Model-based transfer learning and sparse coding for partial face recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11): 4347-4356. [21] 何晓云, 许江淳, 史鹏坤, 等. 基于注意力机制的视频人脸表情识别[J]. 信息技术, 2020, 44(2): 103-107. He X Y, Xu J C, Shi P K, et al. Video facial expression recognition method based on attention mechanism [J]. Information Technology, 2020, 44(2): 103-107.(in Chinese) [22] Hariri W. Efficient masked face recognition method during the COVID-19 pandemic [J]. Signal, Image and Video Processing, 2022, 16(3): 605-612. [23] 晏鹏程, 张一鸣, 童光红, 等. 基于卷积神经网络的视频监控人脸识别方法[J]. 成都工业学院学报, 2020, 23(1): 26-31. Yan P C, Zhang Y M, Tong G H, et al. Face recognition method in video surveillance based on convolutional neural network [J]. Journal of Chengdu Technological University, 2020, 23(1): 26-31. (in Chinese) [24] Huo J H, Van Zyl T L. Unique faces recognition in videos [C]//2020 IEEE 23rd International Conference on Information Fusion (FUSION), 2020: 1-7. [25] Wolf L, Hassner T, Maoz I. Face recognition in unconstrained videos with matched background similarity [C]//Computer Vision & Pattern Recognit (CVPR), 2011: 529-534. [26] Ricanek K, Tesafaye T. MORPH: a longitudinal image database of normal adult ageprogression [C]//7th International Conference on Automatic Face and Gesture Recognition (FGR06), 2006: 341-345. [27] Lanitis A, Taylor C J, Cootes T F. Toward automatic simulation of aging effects on face images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 442- 455. [28] Huang G B, Mattar M A, Berg T L, et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environments [J]. Month, 2008: 1-15. [29] Martinez A M, Kak A C. PCA versus LDA [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233. [30] Dhall A, Goecke R, Lucey S, et al. Collecting large, richly annotated facial-expression databases from movies [J]. IEEE Multimedia, 2012, 19(3): 34-41. [31] Wang Z Y, Huang B J, Wang G C, et al. Masked face recognition dataset and application [J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2023, 5(2): 298-304. [32] Liu Z X, Hu H, Bai J Q, et al. Feature aggregation network for video face recognition [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019: 990-998. [33] Peng B Y, Jin X, Wu Y C, et al. Geometry guided feature aggregation in video face recognition [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019: 2670-2677. [34] Protsenko I, Lehinevych T, Voitekh D, et al. Self-attention aggregation network for video face representation and recognition [DB/OL]. 2020[2024-07-17]. http://arxiv.org/abs/2010.05340v1. [35] Gong S X, Shi Y C, Jain A K. Low quality video face recognition: multi-mode aggregation recurrent network (MARN) [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019: 1027-1035. [36] Gong S X, Shi Y C, Jain A K. Recurrent embedding aggregation network for video face recognition [DB/OL]. 2019[2024-07-17]. http://arxiv.org/abs/1904.12019v2. [37] Gong S X, Shi Y C, Kalka N D, et al. Video face recognition: component-wise feature aggregation network (C-FAN) [C]//2019 International Conference on Biometrics (ICB), 2019: 1-8. [38] Zhao H, Shi Y J, Tong X, et al. G-FAN: graph-based feature aggregation network for video face recognition [C]//2020 25th International Conference on Pattern Recognition (ICPR), 2021: 1672-1678. [39] Zhang L Y, Wang H B, Wang H T. A feature map aggregation network for unconstrained video face recognition [J]. Journal of Intelligent & Fuzzy Systems, 2023, 44(2): 2413-2425. [40] Hörmann S, Cao Z X, Knoche M, et al. Face aggregation network for video face recognition [C]//2021 IEEE International Conference on Image Processing (ICIP), 2021: 2973-2977. [41] Wei J, Ying C. Aggregative adversarial network for still-to-video face recognition [C]//20205th International Conference on Computer and Communication Systems (ICCCS), 2020: 266-270. [42] Ou Z H, Hu Y C, Song M N, et al. Redundancy removing aggregation network with distance calibration for video face recognition [J]. IEEE Internet of Things Journal, 2021, 8(9): 7279-7287. [43] Rivero-Hernandez J, Morales-Gonzalez A, Denis L G, et al. Ordered weighted aggregation networks for video face recognition [J]. Pattern Recognition Letters, 2021, 146: 237-243. [44] Li Q, Wan Q, Lee S H, et al. Video face recognition with audio-visual aggregation network [C]//28th International Conference on Neural Information Processing (ICONIP), 2021: 150-161. [45] 刘宇琦, 赵宏伟, 王玉. 一种基于QPSO优化的流形学习的视频人脸识别算法[J]. 自动化学报, 2020, 46(2): 256-263. Liu Y Q, Zhao H W, Wang Y. Video face recognition method based on QPSO and manifold learning [J]. Acta Automatica Sinica, 2020, 46(2): 256-263. (in Chinese) [46] Alqaralleh E, Afaneh A, Toygar Ö. Masked face recognition using frontal and profile faces with multiple fusion levels [J]. Signal, Image and Video Processing, 2023, 17(4): 1375-1382. [47] Rodríguez A M, Geradts Z, Worring M, et al. Improved likelihood ratios for surveillance video face recognition with multimodal feature pairing [C]//202311th International Workshop on Biometrics and Forensics (IWBF), 2023: 3503-3607. [48] Klare B F, Klein B, Taborsky E, et al. Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1931-1939. [49] Maze B, Adams J, Duncan J A, et al. IARPA Janus benchmark - C: face dataset and protocol [C]//2018 International Conference on Biometrics (ICB), 2018: 158-165. [50] Kalka N D, Maze B, Duncan J A, et al. IJB-S: IARPA Janus surveillance video benchmark [C]//2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), 2018: 529-537. [51] Beveridge J R, Phillips P J, Bolme D S, et al. The challenge of face recognition from digital point-and-shoot cameras [C]//2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 2013: 1-8. [52] Huang Z W, Shan S G, Wang R P, et al. A benchmark and comparative study of videobased face recognition on COX face database [J]. IEEE Transactions on Image Processing, 2015, 24(12): 5967-5981. |
[1] | HU Wangxin, CHENG Yingchao, HE Yulin, HUANG Zhexue, CAI Zhanchuan. Benchmarking of Spiking Neural Networks and Performance Evaluation of Neuromorphic Training Frameworks [J]. Journal of Applied Sciences, 2025, 43(1): 169-182. |
[2] | LIU Jianing, ZHANG Sijia, ZHANG Zhenglong, WANG Yihan, AN Zongshi. A Diffusion Map Recommendation Model Based on Multi-hop Mechanism [J]. Journal of Applied Sciences, 2025, 43(1): 123-136. |
[3] | JIA Zhiyang, XU Zhao, LENG Yanmei, WEN Xin, GONG Haoyu. Lightweight Fault Diagnosis Model Based on Parallel Optimized CBAM [J]. Journal of Applied Sciences, 2025, 43(1): 94-109. |
[4] | DUAN Xintao, BAI Luwei, XU Kaiou, ZHANG Meng, BAO Mengru, WU Yinhang, QIN Chuan. Lightweight and Efficient Image Steganography Based on Convolutional Neural Network [J]. Journal of Applied Sciences, 2025, 43(1): 80-93. |
[5] | WANG Binglun, FANG Wei. Improved Daily Average 2 m Temperature Correction Method Based on U-Net [J]. Journal of Applied Sciences, 2025, 43(1): 51-65. |
[6] | TANG Yiheng, WANG Yongxiong, WANG Zhe, ZHANG Xiaoli. Emotion Recognition of EEG Using Subdomain Adaptation and Spatial-Temporal Learning [J]. Journal of Applied Sciences, 2024, 42(6): 1016-1026. |
[7] | HE Jiabei, ZHOU Juxiang, GAN Jianhou, WU Di, WEN Xiaoyu. Classroom Expression Classification Model Based on Multitask Learning [J]. Journal of Applied Sciences, 2024, 42(6): 947-961. |
[8] | JIN Yanliang, FAN Baorong, GAO Yuan, WANG Xiaoyong, GU Chenjie. Autonomous Driving Algorithm Based on Meta-Learning and Reinforcement Learning [J]. Journal of Applied Sciences, 2024, 42(5): 795-809. |
[9] | LI Sha, WANG Yongxiong, WANG Zhe, CHEN Xu, HE Jiaxin. Casting Defect Detection Based on Local and Global Features [J]. Journal of Applied Sciences, 2024, 42(5): 757-768. |
[10] | WANG Zichi, LI Bin, FENG Guorui, ZHANG Xinpeng. Review of Steganalysis for Digital Images [J]. Journal of Applied Sciences, 2024, 42(5): 723-732. |
[11] | WANG Na, ZHU Huijuan, SONG Xiangmei, FENG Xia. A Domain Adaptive Security Analysis Framework for Smart Contracts [J]. Journal of Applied Sciences, 2024, 42(4): 585-597. |
[12] | LI Zijie, ZHANG Shu, OUYANG Zhaoxiang, WANG Jun, WU Di. xDeepFM Recommendation Model Based on Field Factorization [J]. Journal of Applied Sciences, 2024, 42(3): 513-524. |
[13] | JIN Yanliang, WU Xiaowei. Sign Language Recognition Based on Two-Stream Adaptive Enhanced Spatial Temporal Graph Convolutional Network [J]. Journal of Applied Sciences, 2024, 42(2): 189-199. |
[14] | SHEN Kunye, ZHOU Xiaofei, FEI Xiaobo, CHEN Yuzhong, ZHANG Jiyong, YAN Chenggang. Boundary-Aware Deeply Residual Network for Salient Object Detection of Strip Steel Surface Defects [J]. Journal of Applied Sciences, 2023, 41(6): 978-988. |
[15] | ZHANG Chunsen, ZHU Jiangle, ZHANG Xuefen, LIU Xudong, SHI Shu. Void Filling of DEM in a Generative Adversarial Network Fused with Self-Attention Mechanism [J]. Journal of Applied Sciences, 2023, 41(5): 789-800. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||