[1] 李泽林, 陈虹琴. 人工智能对教学的解放与奴役——兼论教学发展的现代性危机[J]. 电化教育研究, 2020, 41(1): 115-121. Li Z L, Chen H Q. The emancipation and slavery of artificial intelligence to teaching: on modern crisis in teaching development [J]. e-Education Research, 2020, 41(1): 115-121. (in Chinese) [2] 贾宁, 郑纯军. 融合音频、 文本、 表情动作的多模态情感识别[J]. 应用科学学报, 2023, 41(1): 55-70. Jia N, Zheng C J. Multi-modal emotion recognition using speech, text and motion [J]. Journal of Applied Sciences, 2023, 41(1): 55-70. (in Chinese) [3] 刘思进, 朱小飞, 彭展望. 联合多任务学习的对话情感分类和行为识别[J]. 计算机学报, 2023, 46(9): 1947-1960. Liu S J, Zhu X F, Peng Z W. Dialogue sentiment classification and act recognition based on multi-task learning [J]. Chinese Journal of Computers, 2023, 46(9): 1947-1960. (in Chinese) [4] 王楠, 王淇. 基于深度学习的学生课堂专注度测评方法[J]. 数据分析与知识发现, 2023, 7(6): 123-133. Wang N, Wang Q. Evaluation method of student engagement based on deep learning [J]. Data Analysis and Knowledge Discovery, 2023, 7(6): 123-133. (in Chinese) [5] 郦泽坤, 苏航, 陈美月, 等. 支持MOOC课程的动态表情识别算法[J]. 微型计算机系统, 2017, 38(9): 2096-2100. Li Z K, Su H, Chen M Y, et al. Dynamic facial expression recognition algorithm for massive open online courses [J]. Journal of Chinese Computer Systems, 2017, 38(9): 2096-2100. (in Chinese) [6] Ekman P. Differential communication of affect by head and body cues [J]. Journal of Personality and Social Psychology, 1965, 2(5): 726-735. [7] Ekman P E, Friesen W V. Facial action coding system (FACS) [J]. Environmental Psychology and Nonverbal Behavior, 1976, 1(1): 56-75. [8] Gunes H, Pantic M, Automatic, dimensional and continuous emotion recognition [J]. International Journal of Synthetic Emotions, 2010, 1(1): 68-99. [9] Deng D D, Chen Z K, Shi B E. Multitask emotion recognition with incomplete labels [C]//15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), 2020: 592-599. [10] Martinez B, Valstar M F, Jiang B H, et al. Automatic analysis of facial actions: a survey [J]. IEEE Transactions on Affective Computing, 2019, 10(3): 325-347. [11] Zhi R C, Liu M Y, Zhang D Z. A comprehensive survey on automatic facial action unit analysis [J]. The Visual Computer, 2020, 36(5): 1067-1093. [12] 李冠彬, 张锐斐, 朱鑫, 等. 语义关系引导的面部动作单元分析[J]. 软件学报, 2023, 34(6): 2922- 2941. Li G B, Zhang R F, Zhu X, et al. Semantic relationships guided facial action unit analysis [J]. Journal of Software, 2023, 34(6): 2922-2941. (in Chinese) [13] Toisoul A, Kossaifi J, Bulat A, et al. Estimation of continuous valence and arousal levels from faces in naturalistic conditions [J]. Nature Machine Intelligence, 2021, 3: 42-50. [14] Siirtola P, Tamminen S, Chandra G, et al. Predicting emotion with biosignals: a comparison of classification and regression models for estimating valence and arousal level using wearable sensors [J]. Sensors, 2023, 23(3): 1598. [15] Qi D L, Tan W J, Yao Q, et al. YOLO5Face: why reinventing a face detector [DB/OL]. 2021[2023-03-09]. http://arxiv.org/abs/2105.12931. [16] Mavadati S M, Mahoor M H, Bartlett K, et al. DISFA: a spontaneous facial action intensity database [J]. IEEE Transactions on Affective Computing, 2013, 4(2): 151-160. [17] Charte F, Rivera A J, del Jesus M J, et al. Addressing imbalance in multilabel classification: measures and random resampling algorithms [J]. Neurocomputing, 2015, 163: 3-16. [18] Kossaifi J, Tzimiropoulos G, Todorovic S, et al. AFEW-VA database for valence and arousal estimation in-the-wild [J]. Image and Vision Computing, 2017, 65: 23-36. [19] Kingma D P, Ba J. Adam: a method for stochastic optimization [DB/OL]. 2014[2023-03-09]. https://arxiv.org/abs/1412.6980. [20] Lucey P, Cohn J F, Kanade T, et al. The extended Cohn-Kanade dataset (CK): a complete dataset for action unit and emotion-specified expression [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, 2010: 94-101. [21] Goodfellow I J, Erhan D, Carrier P L, et al. Challenges in representation learning: a report on three machine learning contests [C]//20th International Conference on Neural Information Processing, 2013: 117-124. [22] 马中启, 朱好生, 杨海仕, 等. 基于多特征融合密集残差CNN的人脸表情识别[J]. 计算机应用与软件, 2019, 36(7): 197-201. Ma Z Q, Zhu H S, Yang H S, et al. Facial expression recognition based on multi-feature fusion dense residual CNN [J]. Computer Applications and Software, 2019, 36(7): 197-201. (in Chinese) [23] Zhang T, Zheng W M, Cui Z, et al. Spatial-temporal recurrent neural network for emotion recognition [J]. IEEE Transactions on Cybernetics, 2019, 49(3): 839-847. [24] Fei Z X, Yang E F, Li D U, et al. Deep convolution network based emotion analysis towards mental health care [J]. Neurocomputing, 2020, 388: 212-227. [25] 徐琳琳, 张树美, 赵俊莉. 构建并行卷积神经网络的表情识别算法[J]. 中国图象图形学报, 2019, 24(2): 227-236. Xu L L, Zhang S M, Zhao J L. Expression recognition algorithm for parallel convolutional neural networks [J]. Journal of Image and Graphics, 2019, 24(2): 227-236. (in Chinese) [26] 孙晓, 丁小龙. 基于生成对抗网络的人脸表情数据增强方法[J]. 计算机工程与应用, 2020, 56(4): 115-121. Sun X, Ding X L. Data augmentation method based on generative adversarial networks for facial expression recognition sets [J]. Computer Engineering and Applications, 2020, 56(4): 115- 121. (in Chinese) [27] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2261-2269. [28] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [DB/OL]. 2014[2023-03-09]. https://arxiv.org/abs/1409.1556. [29] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 2818- 2826. [30] Hung J C, Lin K C, Lai N X. Recognizing learning emotion based on convolutional neural networks and transfer learning [J]. Applied Soft Computing, 2019, 84: 105724. |