[1] 陈景霞, 郝为, 张鹏伟, 等. 基于混合神经网络的脑电时空特征情感分类[J]. 软件学报, 2021, 32(12): 3869-3883. Chen J X, Hao W, Zhang P W, et al. Emotion classification of spatiotemporal EEG features using hybrid neural networks [J]. Journal of Software, 2021, 32(12): 3869-3883. (in Chinese) [2] Liu S Q, Wang X, Zhao L, et al. 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition [J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5321-5331. [3] Wang Z, Wang Y X, Zhang J P, et al. Spatial-temporal feature fusion neural network for EEG-based emotion recognition [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2507212. [4] 蔡梓良, 郭苗苗, 杨新生, 等. 基于最大分类器差异域对抗方法的跨被试脑电情绪识别研究[J]. 生物医学工程学杂志, 2021, 38(3): 455-462. Cai Z L, Guo M M, Yang X S, et al. Cross-subject electroencephalogram emotion recognition based on maximum classifier discrepancy [J]. Journal of Biomedical Engineering, 2021, 38(3): 455-462. (in Chinese) [5] Li Z Y, Zhao X W, Yang Y, et al. HVFM: an emotion classification model based on horizontal and vertical flow domain-adaptive [C]//2022 IEEE International Conference on Mechatronics and Automation (ICMA), 2022: 455-460. [6] Tian Z K, Li D H, Yang Y, et al. A novel domain adversarial networks based on 3D-LSTM and local domain discriminator for hearing-impaired emotion recognition [J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(1): 363-373. [7] Zhu Y C, Zhuang F Z, Wang J D, et al. Deep subdomain adaptation network for image classification [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713-1722. [8] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module [C]//European Conference on Computer Vision. Cham: Springer, 2018: 3-19. [9] Koelstra S, Muhl C, Soleymani M, et al. DEAP: a database for emotion analysis; using physiological signals [J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31. [10] Jatupaiboon N, Pan-Ngum S, Israsena P. Real-time EEG-based happiness detection system [J]. The Scientific World Journal, 2013: 618649. [11] Alhagry S, Aly A, Reda A. Emotion recognition based on EEG using LSTM recurrent neural network [J]. International Journal of Advanced Computer Science and Applications, 2017, 8(10): 355-358. [12] Zheng W L, Zhu J Y, Peng Y, et al. EEG-based emotion classification using deep belief networks [C]//2014 IEEE International Conference on Multimedia and Expo (ICME), 2014: 6890166. [13] Gao Z K, Yuan T, Zhou X J, et al. A deep learning method for improving the classification accuracy of SSMVEP-based BCI [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(12): 3447-3451. [14] Gao Z K, Wang X M, Yang Y X, et al. A channel-fused dense convolutional network for EEGbased emotion recognition [J]. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13(4): 945-954. [15] Yin Z, Liu L, Chen J N, et al. Locally robust EEG feature selection for individual-independent emotion recognition [J]. Expert Systems with Applications, 2020, 162: 113768. [16] Liang Z, Zhou R S, Zhang L, et al. EEGFuseNet: hybrid unsupervised deep feature characterization and fusion for high-dimensional EEG with an application to emotion recognition [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1913-1925. [17] He Z P, Zhong Y S, Pan J H. Joint temporal convolutional networks and adversarial discriminative domain adaptation for EEG-based cross-subject emotion recognition [C]//2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022: 3214-3218. [18] Wang Z, Wang Y X, Hu C F, et al. Transformers for EEG-based emotion recognition: a hierarchical spatial information learning model [J]. IEEE Sensors Journal, 2022, 22(5): 4359- 4368. [19] Liu S Q, Wang Z Y, An Y L, et al. EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network [J]. Knowledge-Based Systems, 2023, 265: 110372. |