[1] Liu Y, Zhu Z, Bai X. WDNet: watermark-decomposition network for visible watermark removal [C]//IEEE Winter Conference on Applications of Computer Vision, 2021: 3684-3692. [2] Cun X D, Pun C M. Split then refine: stacked attention-guided ResUNets for blind single image visible watermark removal [J]. AAAI Conference on Artificial Intelligence, 2021, 35(2): 1184-1192. [3] Hertz A, Fogel S, Hanocka R, et al. Blind visual motif removal from a single image [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 6851-6860. [4] Sun R Z, Su Y K, Wu Q Y. DENet: disentangled embedding network for visible watermark removal [C]//AAAI Conference on Artificial Intelligence, 2023, 37(2): 2411-2419. [5] Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks [DB/OL]. (2013-11-21) [2024-01-08]. https://arxiv.org/abs/1312.6199. [6] Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[DB/OL]. (2014-11-20) [2024-01-08]. https://arxiv.org/abs/1412.6572. [7] Carlini N, Wagner D. Towards evaluating the robustness of neural networks [C]//2017 IEEE Symposium on Security and Privacy (SP), 2017: 39-57. [8] Yin Z, Wang H, Chen L, et al. Reversible adversarial attack based on reversible image transformation [DB/OL]. (2021-05-25) [2024-01-08]. https://arxiv.org/pdf/1911.02360. [9] Chen L, Zhu S W, Andrew A, et al. Reversible attack based on local visible adversarial perturbation [J]. Multimedia Tools and Applications, 2024, 83(4): 11215-11227. [10] Chattopadhay A, Sarkar A, Howlader P, et al. Grad-CAM++: generalized gradientbased visual explanations for deep convolutional networks [C]//IEEE Winter Conference on Applications of Computer Vision, 2018: 839-847. [11] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [12] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module [C]//Computer Vision-ECCV 2018, 2018: 3-19. [13] Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255. [14] Madry A, Makelov A, Schmidt L, et al. Towards deep learning models resistant to adversarial attacks [DB/OL]. (2017-06-19) [2024-01-08]. https://arxiv.org/abs/1706.06083. [15] Xiao C, Li B, Zhu J Y, et al. Generating adversarial examples with adversarial networks [DB/OL]. (2018-01-08) [2024-01-08]. https://arxiv.org/abs/1801.02610. [16] Zhang J W, Wang J W, Wang H, et al. Self-recoverable adversarial examples: a new effective protection mechanism in social networks [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(2): 562-574. [17] Jing J P, Deng X, Xu M, et al. HiNet: deep image hiding by invertible network [C]//IEEE/CVF International Conference on Computer Vision, 2021: 4713-4722. [18] Almohammad A, Ghinea G. Stego image quality and the reliability of PSNR [C]//2nd International Conference on Image Processing Theory, Tools and Applications, 2010: 215-220. [19] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |