[1] 许相莉,张利彪,于哲舟,周春光. 多粒度颜色特征在图像检索中的应用(英)[J]. 应用科学学报,2009, 27(1):56-61. Xu X L, Zhang L B, Yu Z Z, Zhou C G. Application of multi-granularity color features in image retrieval[J]. Journal of Applied Sciences, 2009, 27(1):56-61.
[2] Castanon G, Saligrama V, Caron A L, Jodoin P. Real-time activity search of surveillance video[C]//IEEE 9th International Conference on Advanced Video & Signal-based Surveillance. IEEE, 2012:246-251.
[3] 赵永威, 李弼程, 高毫林. 一种基于精确欧氏位置敏感哈希的目标检索方法[J]. 应用科学学报, 2012, 30(4):349-355. Zhao Y W, Li B C, Gao H L. Object retrieval based on exact euclidean locality sensitive hashing[J]. Journal of Applied Sciences, 2012, 30(4):349-355. (in Chinese)
[4] 郑永军,张连海. 基于动态匹配词格检索的关键词检测[J]. 应用科学学报,2014, 32(2):149-155. Zheng Y J, Zhang L H. Keyword detection based on dynamic match lattice spotting[J]. Journal of Applied Sciences, 2014, 32(2):149-155. (in Chinese)
[5] Buhler J. Efficient large-scale sequence comparison by locality-sensitive hashing[J]. Bioinformatics, 2001, 17(5):419-28.
[6] Indyk P, Motwani R. Approximate nearest neighbors:towards removing the curse of dimensionality[J]. Theory of Computing, 2000, 8(11):604-613.
[7] 张一凡,余小清,安炫东,万旺根. 一种基于CUDA的局部敏感哈希算法[J]. 应用科学学报,2015, 33(5):550-558. Zhang Y F, Yu X Q, An X D, Wan W G. A locality sensitive hashing algorithm based on CUDA[J]. Journal of Applied Sciences, 2015, 33(5):550-558. (in Chinese)
[8] Raginsky M, Lazebnik S. Locality-sensitive binary codes from shift-invariant kernels[C]//Advances in Neural Information Processing Systems 22:23rd Annual Conference on Neural Information Processing Systems, 2009:1509-1517.
[9] Rahimi A, Recht B. Random features for large-scale kernel machines[J]. Advances in Neural Information Processing Systems, 2007, 20:1177-1184.
[10] Gordo A, Perronnin F, Gong Y C, Lazebnik S. Asymmetric distances for binary embeddings[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 36(1):729-736.
[11] Gong Y C, Lazebnik S, Gordo A, Perronnin F. Iterative quantization:a procrustean approach to learning binary codes for large-scale image retrieval[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2011:2916-2929.
[12] Weiss Y, Torralba A, Fergus R. Spectral hashing[J]. Advances in Neural Information Processing Systems, 2008, 282(3):1753-1760.
[13] Norouzi M, Fleet D J. Cartesian K-means[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2013:3017-3024.
[14] Lv Y M, Ng W W Y, Zeng Z Q, Yeung D S, Chan P P K. Asymmetric cyclical hashing for large scale image retrieval[J]. IEEE Transactions on Multimedia, 2015, 17(8):1225-1235.
[15] Kong W, Li W J. Double-bit quantization for hashing[C]//AAAI Conference on Artificial Intelligence, 2004:137-138.
[16] Liu W, Wang J, Kumar S, Chang S F. Hashing with Graphs[C]//Proceedings of the 28th International Conference on Machine Learning, 2011:1-8.
[17] Lee Y, Heo J P, Yoon S E. Quadra-Embedding:binary code embedding with low quantization error[C]//Asian Conference on Computer Vision. Springer-Verlag, 2012:214-222.
[18] Kong W, Li W J, Guo M. Manhattan hashing for large-scale image retrieval[C]//Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval. ACM, 2012:45-54.
[19] Oliva A, Torralba A. Modeling the shape of the scene:a holistic representation of the spatial envelope[J]. International Journal of Computer Vision, 2001, 42(3):145-175. |