应用科学学报 ›› 2023, Vol. 41 ›› Issue (4): 718-726.doi: 10.3969/j.issn.0255-8297.2023.04.015

• 控制与系统 • 上一篇    

基于神经网络PID的SMA丝恒输出力控制方法

王奔, 吕佩伦, 王扬威   

  1. 东北林业大学 机电工程学院, 黑龙江 哈尔滨 150040
  • 收稿日期:2021-08-30 发布日期:2023-08-02
  • 通信作者: 王扬威,高级工程师,研究方向为康复机器人、工业机器人与自动化系统、仿生软体机器人、人工智能与智能装备。E-mail:wang.yangwei@nefu.edu.cn E-mail:wang.yangwei@nefu.edu.cn
  • 基金资助:
    国家自然科学基金(No. 52075089);黑龙江省自然科学基金(No. LH2019E008)资助

Control Method of SMA Wire Constant Output Force Based on Neural Network PID

WANG Ben, Lü Peilun, WANG Yangwei   

  1. School of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China
  • Received:2021-08-30 Published:2023-08-02

摘要: 为了实现形状记忆合金(shape memory alloys,SMA)丝的恒输出力控制,提出了一种基于粒子群优化神经网络比例积分微分(proportion integral differential,PID)的恒输出力控制方法,在研究SMA丝自感知电阻阻值和输出力、SMA丝温度对应关系的基础上,采用SMA丝电阻作为系统反馈,利用粒子群算法和神经网络算法对PID的参数进行优化,实现了SMA丝的恒输出力精确控制,与传统PID控制相比,降低了超调量,提高了响应速度。

关键词: 形状记忆合金, 粒子群优化, 神经网络优化, PID恒力控制

Abstract: To realize the constant output force control of shape memory alloys (SMA) wire, a constant output force control method based on particle swarm optimization neural network proportion integral differential (PID) is proposed. This paper examines the relationship between SMA wire self-perceived resistance value, output force, and temperature, with SMA wire resistance used as system feedback. Particle swarm algorithm is then applied to optimize the parameters of PID, achieving accurate control of constant output force of SMA wire, thereby reducing overshoot and improving response speed compared to traditional PID control.

Key words: shape memory alloy, particle swarm optimization, neural network optimization, PID constant force control

中图分类号: