应用科学学报 ›› 2024, Vol. 42 ›› Issue (6): 922-933.doi: 10.3969/j.issn.0255-8297.2024.06.003

• 信号与信息处理 • 上一篇    下一篇

ECG-UNet——基于U型结构的轻量化医学图像分割算法

裴刚, 张孙杰, 张佳鹏, 庞俊   

  1. 上海理工大学 光电信息与计算机工程学院, 上海 200093
  • 收稿日期:2023-05-29 出版日期:2024-11-30 发布日期:2024-11-30
  • 通信作者: 张孙杰,副教授,研究方向为智能图像处理、模糊系统控制与滤波。E-mail:zhang_sunjie@126.com E-mail:zhang_sunjie@126.com
  • 基金资助:
    国家自然科学基金(No.61603255);上海市晨光计划项目(No.18CG52)资助

ECG-UNet: a Lightweight Medical Image Segmentation Algorithm Based on U-Shaped Structures

PEI Gang, ZHANG Sunjie, ZHANG Jiapeng, PANG Jun   

  1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2023-05-29 Online:2024-11-30 Published:2024-11-30

摘要: 近年来,Transformer模型改善了深度神经网络在传统医学图像分割领域性能欠佳的问题,但因庞大的计算参数量而难以应用于移动端,为此提出一种轻量化网络ECG-UNet。首先,在保持模型性能的前提下,在瓶颈处采用线性映射与注意力相结合的策略替代普通卷积,以减少网络的参数量;同时,在网络中引入轻量化多层感知机模块,从而在图像中学习到关于分割目标更多的位置信息;其次,使用空洞卷积来获取更大的感受野;最后,在跳跃连接上加入门控注意力机制,增强网络中的特征传播,以相对较小的计算代价换取模型性能的进一步提升。在BUSI和ISIC2018两个数据集上对该模型进行验证,结果表明:本文提出的网络结构相较于当前主流算法,在分割性能更佳的情况下大大降低了计算资源的消耗。

关键词: 医学图像分割, 神经网络, 轻量化, 门控注意力

Abstract: In recent years, Transformer models have addressed the limitations of deep neural networks in traditional medical image segmentation. However, they still underperform in segmentation at the edges of medical images and suffer from large number of parameters and computational complexity, making them unsuitable for mobile applications. In this paper, we propose a lightweight network called ECG-UNet to mitigate these issues. Firstly, the model uses a strategy combining linear mapping and attention instead of conventional convolution at the bottleneck to reduce the number of network parameters while maintaining performance. Meanwhile, we introduce a lightweight multilayer perceptron module to learn more location information of the image. Secondly, dilated convolutions are applied to expand the respective field. Finally, in exchange for further improvement of the model performance at a relatively small computational cost, a gate attention mechanism is added in the skip connections to enhance the feature propagation in the network. The model is validated on the BUSI and ISIC2018 datasets. The results show that the proposed network structure greatly reduces the computational costs while achieving superior segmentation performance compared to current mainstream algorithms.

Key words: medical image segmentation, neural network, lightweight, gated attention

中图分类号: