应用科学学报 ›› 2025, Vol. 43 ›› Issue (1): 35-50.doi: 10.3969/j.issn.0255-8297.2025.01.003
金永超1, 王志坚2, 贾慧爽1, 杜云天1, 胡鑫婷3, 陈学斌1,4
收稿日期:
2024-07-17
出版日期:
2025-01-30
发布日期:
2025-01-24
通信作者:
陈学斌,教授,博导,研究方向为数据安全、物联网安全、网络安全。E-mail:chxb@qq.com
E-mail:chxb@qq.com
基金资助:
JIN Yongchao1, WANG Zhijian2, JIA Huishuang1, DU Yuntian1, HU Xinting3, CHEN Xuebin1,4
Received:
2024-07-17
Online:
2025-01-30
Published:
2025-01-24
摘要: 爆破是防止雪崩的有效方法,但合适的爆破时间、爆破位置和爆破能量很难确定。本文首先收集、爬取了关于雪崩的指标数据,并对数据进行预处理。然后对数据进行探索性数据分析,重点分析时间与雪崩发生的关系,发现雪崩具有明显的季节性。以数据的80%为训练集,20%为测试集,建立支持向量机、随机森林和感知器神经网络模型,并利用贝叶斯优化算法对模型进行参数寻优,结果显示感知器神经网络的准确率最高。最后根据损失度对3个模型进行集成,对3个集成策略进行对比,结果显示SVM-RF-MLP模型的准确率最高为0.952。此后,建立基础的爆破能量模型,考虑山体高度、雪层密度随时间的变化,再基于历史数据寻找雪层稳定性的分布规律,构建动态雪崩稳定性爆破能量模型。通过对数据进行模拟验证以及对其进行三维山体可视化分析,获得最佳的爆破时机、爆破位置和爆破能量。
中图分类号:
金永超, 王志坚, 贾慧爽, 杜云天, 胡鑫婷, 陈学斌. 融合机器学习与动态模型优化的雪崩预测及防治策略[J]. 应用科学学报, 2025, 43(1): 35-50.
JIN Yongchao, WANG Zhijian, JIA Huishuang, DU Yuntian, HU Xinting, CHEN Xuebin. Avalanche Prediction and Prevention Strategies Integrating Machine Learning and Dynamic Model Optimization[J]. Journal of Applied Sciences, 2025, 43(1): 35-50.
[1] 段仕美, 刘时银, 朱钰, 等. 梅里雪山1991年和2019年雪崩事件重建及影响因素分析[J]. 冰川冻土, 2022, 44(3): 771-783. Duan S M, Liu S Y, Zhu Y, et al. Reconstruction of avalanche events in Meili Snow Mountain in 1991 and 2019 and analysis of influencing factors [J]. Journal of Glaciology and Geocryology, 2022, 44(3): 771-783. (in Chinese) [2] Keylock C J, Mcclung D M, Magnússon M M. Avalanche risk mapping by simulation [J]. Journal of Glaciology, 1999, 45(150): 303-314. [3] Eckert N, Giacona F. Towards a holistic paradigm for long-term snow avalanche risk assessment and mitigation [J]. Ambio, 2023, 52(4): 711-732. [4] Schweizer J, Mitterer C, Techel F, et al. On the relation between avalanche occurrence and avalanche danger level [J]. The Cryosphere, 2020, 14(2): 737-750. [5] Alruhaymi A Z, Kim C J. Study on the missing data mechanisms and imputation methods [J]. Open Journal of Statistics, 2021, 11(4): 477-492. [6] Fees A, Van Herwijnen A, Lombardo M, et al. Glide-snow avalanches: a mechanical, threshold-based release area model [J]. Natural Hazards and Earth System Sciences, 2024, 24(10): 3387-3400. [7] Roebber P J, Bruening S L, Schultz D M, et al. Improving snowfall forecasting by diagnosing snow density [J]. Weather and Forecasting, 2003, 18: 264-287. [8] Yang Y Q, Lyu H J, Chen N. A survey on ensemble learning under the era of deep learning [J]. Artificial Intelligence Review, 2023, 56(6): 5545-5589. [9] 林报嘉, 刘晓东, 杨川, 等. XGBoost机器学习模型与GIS技术结合的公路崩塌灾害易发性研究[J]. 公路, 2020, 65(7): 20-26. Lin B J, Liu X D, Yang C, et al. Study on the susceptibility of highway collapse disasters based on XGBoost machine learning model and GIS technology [J]. Highway, 2020, 65(7): 20-26. (in Chinese) [10] 张远汀, 龚伟伟, 叶钰, 等. 应用机器学习技术预测强雨雪天气过程中的积雪[J]. 科学技术与工程, 2019, 19(15): 58-69. Zhang Y T, Gong W W, Ye Y, et al. Application of machine learning technology to predict snow accumulation during heavy rain and snow weather [J]. Science Technology and Engineering, 2019, 19(15): 58-69. (in Chinese) [11] 杨倩, 秦莉, 高培, 等. 基于RBF网络的新疆特重雪灾区最大积雪深度预测研究[J]. 沙漠与绿洲气象, 2024, 18(1): 89-95. Yang Q, Qin L, Gao P, et al. Research on prediction of maximum snow depth in Xinjiang heavy snow disaster area based on RBF network [J]. Desert and Oasis Meteorology, 2024, 18(1): 89-95. (in Chinese) [12] Kundu S, Chakrabarti B K, Biswas S. Inequality of avalanche sizes in models of fracture [J]. Physical Review E, 2023, 108(1): 014103. [13] Maissen A, Techel F, Volpi M. A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting [J]. Geoscientific Model Development, 2024, 17(21): 7569-7593. [14] 文洪, 巫锡勇, 赵思远, 等. 基于机器学习法的青藏高原沙鲁里山系中段雪崩易发性评价研究[J]. 冰川冻土, 2022, 44(6): 1694-1706. Wen H, Wu X Y, Zhao S Y, et al. Snow avalanche susceptibility evaluation in the central Shaluli Mountains of Tibetan Plateau based on machine learing method [J]. Journal of Glaciology and Geocryology, 2022, 44(6): 1694-1706. (in Chinese) [15] Hendrick M, Techel F, Volpi M, et al. Automated prediction of wet-snow avalanche activity in the Swiss Alps [J]. Journal of Glaciology, 2023, 69(277): 1365-1378. [16] Reuter B, Hagenmuller P, Eckert N. Snow and avalanche climates in the French Alps using avalanche problem frequencies [J]. Journal of Glaciology, 2023, 69(277): 1292-1304. [17] Salazar S, Dahle H, Dupuy B, et al. Multisensor UAS testing to support avalanche forecasting and monitoring [C]//84th EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2023, 2023(1): 1-71. [18] Horton S, Haegeli P. Using snow depth observations to provide insight into the quality of snowpack simulations for regional-scale avalanche forecasting [J]. The Cryosphere, 2022, 16(8): 3393-3411. [19] 赵征, 刘赛恒, 王金, 等. 基于ISSA-ELM-NARMAX的垃圾焚烧炉燃烧过程动态建模及多目标优化 [J]. 动力工程学报, 2024, 44(8): 1264-1271. Zhao Z, Liu S H, Wang J, et al. Dynamic modeling and multi-objective optimization of waste incinerator combustion process based on ISSA-ELM-NARMAX [J]. Journal of Power Engineering, 2024, 44(8): 1264-1271. (in Chinese) [20] 段仕美. 梅里雪山重大雪崩事件重建与雪崩风险评估研究[D]. 昆明: 云南大学, 2022. [21] 陈联君. 基于多源数据的雪崩危险性评价[D]. 武汉: 中国地质大学, 2021. [22] Afrifa-Yamoah E, Mueller U A, Taylor S M, et al. Missing data imputation of highresolution temporal climate time series data [J]. Meteorological Applications, 2020, 27(1): e1873. [23] Blagovechshenskiy V, Medeu A, Gulyayeva T, et al. Application of artificial intelligence in the assessment and forecast of avalanche danger in the Ile Alatau Ridge [J]. Water, 2023, 15(7): 1438. [24] Mayer S, Techel F, Schweizer J, et al. Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations [J]. Natural Hazards and Earth System Sciences, 2023, 23(11): 3445-3465. [25] Toft H B, Müller K, Hendrikx J, et al. Can big data and random forests improve avalanche runout estimation compared to simple linear regression? [J]. Cold Regions Science and Technology, 2023, 211: 103844. |
[1] | 孙明辰, 金辉, 王英. 融合胶囊网络与因果推理的疾病预测[J]. 应用科学学报, 2025, 43(1): 1-19. |
[2] | 魏伟, 金成功, 杨龙, 周默, 孟祥主, 冯慧. 基于预训练大语言模型的实体关系抽取框架及其应用[J]. 应用科学学报, 2025, 43(1): 20-34. |
[3] | 刘珈宁, 张思佳, 张正龙, 王祎涵, 安宗诗. 基于多跳机制的扩散图谱推荐模型[J]. 应用科学学报, 2025, 43(1): 123-136. |
[4] | 邓抒憧, 陈爱斌, 戴子健. 基于多路激励和金字塔切分注意力的鸟类行为识别[J]. 应用科学学报, 2025, 43(1): 154-168. |
[5] | 裴刚, 张孙杰, 张佳鹏, 庞俊. ECG-UNet——基于U型结构的轻量化医学图像分割算法[J]. 应用科学学报, 2024, 42(6): 922-933. |
[6] | 贺加贝, 周菊香, 甘健侯, 吴迪, 温晓宇. 基于多任务学习的课堂表情分类模型[J]. 应用科学学报, 2024, 42(6): 947-961. |
[7] | 赵夫群, 黄鹤, 耿国华. 基于主成分特征向量的点云配准方法[J]. 应用科学学报, 2024, 42(6): 962-976. |
[8] | 刘炜, 徐辉, 李卫民. 一种多模态知识图谱实体对齐方法[J]. 应用科学学报, 2024, 42(6): 1040-1051. |
[9] | 张梦君, 熊邦书. SAR-ATR系统复数对抗样本生成方法[J]. 应用科学学报, 2024, 42(5): 747-756. |
[10] | 栗莎, 王永雄, 王哲, 陈旭, 何嘉欣. 融合局部和全局特征的铸件缺陷检测[J]. 应用科学学报, 2024, 42(5): 757-768. |
[11] | 艾均, 洪星琦. 融合标题情感和话题特征的新闻推荐算法[J]. 应用科学学报, 2024, 42(5): 810-822. |
[12] | 刁悦钦, 李志文, 山子岐, 李凡. 多尺度特征融合注意力机制的滤棒质检算法[J]. 应用科学学报, 2024, 42(5): 823-836. |
[13] | 郑红, 刘文, 邱俊杰, 余金浩. 融合Transformer的剩余使用寿命预测模型[J]. 应用科学学报, 2024, 42(5): 847-856. |
[14] | 何磊, 栗风永, 秦川. 跨通道交互注意力机制驱动的双流网络跨模态行人重识别[J]. 应用科学学报, 2024, 42(5): 884-892. |
[15] | 华怡坦, 黄影平, 过文昊. 基于CNN和Transformer点云图像融合的道路检测[J]. 应用科学学报, 2024, 42(4): 695-708. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||