应用科学学报 ›› 2025, Vol. 43 ›› Issue (1): 51-65.doi: 10.3969/j.issn.0255-8297.2025.01.004

• 计算机应用专辑 • 上一篇    下一篇

基于U-Net改进的日平均2 m气温订正方法

王冰轮1, 方巍1,2,3   

  1. 1. 南京信息工程大学 计算机学院, 江苏 南京 210044;
    2. 南京气象科技创新研究院 中国气象局交通气象重点开放实验室, 江苏 南京 210041;
    3. 苏州大学 江苏省计算机信息处理技术重点实验室, 江苏 苏州 215000
  • 收稿日期:2024-07-17 出版日期:2025-01-30 发布日期:2025-01-24
  • 通信作者: 方巍,教授,博导,研究方向为大数据分析、计算机视觉、数据挖掘、信息检索、AI+气象、软件工程。E-mail:hsfangwei@sina.com E-mail:hsfangwei@sina.com
  • 基金资助:
    国家自然科学基金(No.42075007,No.42475149);中国气象局流域强降水重点开放实验室开放研究基金(No.2023BHR-Y14);中国气象局交通气象重点开放实验室开放研究基金项目(北极阁基金项目)(No.BJG202306)资助

Improved Daily Average 2 m Temperature Correction Method Based on U-Net

WANG Binglun1, FANG Wei1,2,3   

  1. 1. School of Computer, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
    2. Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210041, Jiangsu, China;
    3. Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou 215000, Jiangsu, China
  • Received:2024-07-17 Online:2025-01-30 Published:2025-01-24

摘要: 针对数据订正常用的深度学习模型U-Net中不能充分学习空间特征以及图像细节信息丢失的问题,提出了S-CUnet 3+模型。S-CUnet 3+采取以下两个措施对U-Net进行改进:一是将原模型与能够学习图片全局特征的Swin Transformer有机结合起来;二是引入多尺度连接操作。模型还采用了预训练与微调的训练策略针对多个预报步长同时订正。7个预报步长的日平均2 m气温预报值订正的实验结果表明,S-CUnet 3+模型对所有预报步长的预报都有明显的订正效果,其中24 h预报步长的订正效果最好,平均绝对误差和均方根误差分别下降了50.64%和49.25%,且相比于基于历史资料的模式距平积分预报订正、分位数回归、岭回归、U-Net、CU-Net、Dense-CUnet和RA-UNet这7种订正方法,S-CUnet 3+取得了更好的订正效果。

关键词: 数据订正, 深度学习, Swin Transformer, 预训练, 微调

Abstract: In response to the limitations of the widely utilized deep learning model U-Net, which is unable to adequately learn spatial features and suffers from the loss of image detail information, the S-CUnet 3+ model has been proposed. S-CUnet 3+ enhances U-Net in two ways: firstly, it integrates the original model with the Swin Transformer, enabling it to learn global features of images, and secondly, it introduces multi-scale connection operations. The model also adopts pre-training and fine-tuning strategies to correct multiple forecast lead times simultaneously. Experimental results of correcting daily average 2 m temperature forecasts across seven lead times show that the S-CUnet 3+ model has a significant correction effect for all lead times, with the best correction effect at the 24-hour lead time. The mean absolute error and root mean square error are reduced by 50.64% and 49.25%, respectively. Moreover, S-CUnet 3+ outperforms seven existing correction methods: anomaly numerical-correction with observations, quantile regression, ridge regression, U-Net, CU-Net, Dense-CUnet, and RA-UNet.

Key words: data correction, deep learning, Swin Transformer, pre-training, finetuning

中图分类号: