[1] Newcombe R A, Lovegrove S J, Davison A J. DTAM: dense tracking and mapping in real-time [C]//International Conference on Computer Vision, 2011: 2320-2327. [2] Forster C, Pizzoli M, Scaramuzza D. SVO: fast semi-direct monocular visual odometry [C]//IEEE International Conference on Robotics and Automation, 2014: 15-22. [3] Tateno K, Tombari F, Laina I, et al. CNN-SLAM: real-time dense monocular SLAM with learned depth prediction [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6565-6574. [4] Campos C, Elvira R, Rodríguez J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM [J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890. [5] Cadena C, Carlone L, Carrillo H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age [J]. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332. [6] Wolf D F, Sukhatme G S. Mobile robot simultaneous localization and mapping in dynamic environments [J]. Autonomous Robots, 2005, 19(1): 53-65. [7] Zhao H J, Chiba M, Shibasaki R, et al. SLAM in a dynamic large outdoor environment using a laser scanner [C]//IEEE International Conference on Robotics and Automation, 2008: 1455-1462. [8] Bescos B, Fácil J M, Civera J, et al. DynaSLAM: tracking, mapping, and inpainting in dynamic scenes [J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083. [9] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [C]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017: 640-651. [10] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [11] He K, Gkioxari G, Dollar P, et al. Mask R-CNN [C]//IEEE International Conference on Computer Vision, 2017: 2980-2988. [12] Huang Z, Huang L, Gong Y, et al. Mask scoring R-CNN [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2019: 6402-6411. [13] Chen K, Pang J M, Wang J Q, et al. Hybrid task cascade for instance segmentation [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4969-4978. [14] Chen X L, Girshick R, He K M, et al. TensorMask: a foundation for dense object segmentation [C]//IEEE/CVF International Conference on Computer Vision, 2019: 2061-2069. [15] Chollet F. Xception: deep learning with depthwise separable convolutions [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807. [16] Howard A G, Zhu M, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17) [2024-07-18]. http://arxiv.org/abs/1704.04861. [17] Sandler M, Howard A, Zhu M L, et al. Mobile NetV2: inverted residuals and linear bottlenecks [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510- 4520. [18] Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3[C]//IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324. [19] Zoph B, Vasudevan V, Shlens J, et al. Learning transferable architectures for scalable image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8697- 8710. [20] Zhang X Y, Zhou X Y, Lin M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856. [21] Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design [C]//European Conference on Computer Vision, 2018: 122-138. [22] Han K, Wang Y H, Tian Q, et al. GhostNet: more features from cheap operations [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1577-1586. [23] Wang Q L, Wu B G, Zhu P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11531-11539. [24] Srinivas A, Lin T Y, Parmar N, et al. Bottleneck transformers for visual recognition [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16514-16524. [25] Li H C, Xiong P F, An J, et al. Pyramid attention network for semantic segmentation [EB/OL]. (2018-05-25) [2024-07-18]. http://arxiv.org/abs/1805.10180. [26] Chen H, Sun K Y, Tian Z, et al. BlendMask: top-down meets bottom-up for instance segmentation [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8570-8578. [27] Chen L C, Zhu Y K, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]//European Conference on Computer Vision, 2018: 833-851. |