应用科学学报 ›› 2024, Vol. 42 ›› Issue (6): 977-987.doi: 10.3969/j.issn.0255-8297.2024.06.007
杭媛芳1,2, 张鹏林2,3
收稿日期:
2022-07-20
出版日期:
2024-11-30
发布日期:
2024-11-30
通信作者:
张鹏林,教授,博导,研究方向为地理国情监测。E-mail:zpl@whu.edu.cn
E-mail:zpl@whu.edu.cn
基金资助:
HANG Yuanfang1,2, ZHANG Penglin2,3
Received:
2022-07-20
Online:
2024-11-30
Published:
2024-11-30
摘要: 目前,在高原环境下的水体表面温度反演成果相对较少,本文结合Landsat-8影像和辐射传输方程法对纳木错湖水体表面温度进行反演并验证其有效性。首先,计算研究区的地表比辐射率;其次,计算同温度下黑体的辐射亮度;最后,利用普朗克函数计算水体表面温度并基于MODIS地表温度产品对反演结果进行验证。实验结果表明,湖泊水体表面温度反演绝对误差最小值为0.449 ℃、最大值为1.685 ℃,均方根误差最小值为1.269 ℃、最大值为1.781 ℃,反演结果与MODIS温度产品的日均温结果较接近,夏季湖泊水体表面温度变化特征基本与纳木错气温一致。该方法可为后续高原湖泊水体水表温度反演研究提供一定的参考。
中图分类号:
杭媛芳, 张鹏林. 基于Landsat-8影像的高原湖泊水体表面温度反演[J]. 应用科学学报, 2024, 42(6): 977-987.
HANG Yuanfang, ZHANG Penglin. Retrieval of Lake Surface Temperature in Plateau Based on Landsat-8 Images[J]. Journal of Applied Sciences, 2024, 42(6): 977-987.
[1] 项文华, 张玉超, 林珊, 等. 湖泊水面温度遥感定量反演研究综述[J]. 四川环境, 2011, 30(6): 116- 122. Xiang W H, Zhang Y C, Lin S, et al. Reviews on quantitative reconstruction of lake surface temperature using remote sensing data [J]. Sichuan Environment, 2011, 30(6): 116-122. (in Chinese) [2] Livingstone D M, Dokulil M T. Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic oscillation [J]. Limnology and Oceanography, 2001, 46(5): 1220-1227. [3] 刘刚, 张运林, 欧维新. 基于MODIS数据的湖面温度反演算法精度对比研究——以太湖为例[J]. 遥感信息, 2013, 28(6): 87-91. Liu G, Zhang Y L, Ou W X. Comparative study in accuracy of different algorithms to retrieve lake surface water temperature of Lake Taihu based on MODIS data [J]. Remote Sensing Information, 2013, 28(6): 87-91. (in Chinese) [4] Trumpickas J, Shuter B J, Minns C K. Forecasting impacts of climate change on great lakes surface water temperatures [J]. Journal of Great Lakes Research, 2009, 35(3): 454-463. [5] Luigi Boschetti M B. Multi-temporal assessment of biophysical parameters in Lakes Garda and Trasimeno from MODIS and MERIS [J]. Italian Journal of Remote Sensing, 2011: 49-62. [6] Oesch D C, Jaquet J M, Hauser A, et al. Lake surface water temperature retrieval using advanced very high resolution radiometer and moderate resolution imaging spectroradiometer data: validation and feasibility study [J]. Journal of Geophysical Research: Oceans, 2005, 110(12): 1-17. [7] Chavula G, Brezonik P, Thenkabail P, et al. Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery [J]. Physics and Chemistry Earth, 2009, 34(13): 749-754. [8] Anyah R O, Semazzi F H M. Simulation of the sensitivity of Lake Victoria Basin climate to lake surface temperatures [J]. Theoretical and Applied Climatology, 2004, 79(1): 55-69. [9] Balsamo G, Dutra E, Stepanenko V M, et al. Deriving an effective lake depth from satellite lake surface temperature data: a feasibility study with MODIS data [J]. Boreal Environment Research, 2010, 15(2): 178-190. [10] 何友翔, 刘娟. 2000—2020年纳木错的时空变化特征及其对气候变化的响应[J]. 甘肃地质, 2021, 30(3): 57-64. He Y X, Liu J. Spatial-temporal variation characteristics of Namco from 2000 to 2020 and its response to climate change [J]. Gansu Geology, 2021, 30(3): 57-64. (in Chinese) [11] 宋辞, 裴韬, 周成虎. 1960年以来青藏高原气温变化研究进展[J]. 地理科学进展, 2012, 31(11): 1503-1509. Song C, Pei T, Zhou C H. Research progress on temperature change on Qinghai-Tibet Plateau since 1960[J]. Progress in Geography, 2012, 31(11): 1503-1509. (in Chinese) [12] 郑度, 林振耀, 张雪芹. 青藏高原与全球环境变化研究进展[J]. 地学前缘, 2002, 9(1): 95-102. Zheng D, Lin Z Y, Zhang X Q. Progress in studies of Tibetan Plateau and global environmental change [J]. Earth Science Frontiers, 2002, 9(1): 95-102.(in Chinese) [13] Li Z G. Glacier and lake changes across the Tibetan Plateau during the past 50 years of climate change [J]. Journal of Resources and Ecology, 2014, 5(2): 123-131. [14] Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers [J]. Science, 2010, 328(5984): 1382-1385. [15] Zhang B, Wu Y H, Zhu L P, et al. Estimation and trend detection of water storage at Namco Lake, central Tibetan Plateau [J]. Journal of Hydrology, 2011, 405(1/2): 161-170. [16] 丁永健, 刘时银, 叶柏生, 等. 近50a中国寒区与旱区湖泊变化的气候因素分析[J]. 冰川冻土, 2006, 28(5): 623-632. Ding Y J, Liu S Y, Ye B S, et al. Analysis of climatic factors of lake changes in cold and arid regions of China in the past 50 years [J]. Journal of Glaciology and Geocryology, 2006, 28(5): 623-632. (in Chinese) [17] Ma R H, Yang G S, Duan H T, et al. China’s lakes at present: number, area and spatial distribution [J]. Science China Earth Sciences, 2011, 54(2): 283-289. [18] 刘金波, 孔维栋, 王君波, 等. 纳木错湖水体固碳微生物数量、 群落结构及其驱动因子[J]. 生态学报, 2019, 39(8): 2772-2783. Liu J B, Kong W D, Wang J B, et al. Number, community structure and driving factors of carbon sequestering microorganisms in the water body of Namco Lake [J]. Acta Ecologica Sinica, 2019, 39(8): 2772-2783. (in Chinese) [19] 刘硕. 湖泊水面温度遥感反演系统研究[D]. 武汉: 华中科技大学, 2013. [20] 柳钦火, 徐希孺, 陈家宜, 等. 遥测地表温度与比辐射率的迭代反演方法——理论推导与数值模拟、 遥感陆面温度[J], 北京大学学报, 1998, 34(2): 248- 253. Liu Q H, Xu X R, Chen J Y, et al. Iterative inversion method of geometric surface temperature and specific emissivity: theoretical derivation and numerical simulation, remote sensing of land surface temperature [J]. Journal of Peking University, 1998, 34(2): 248-253. (in Chinese) [21] 甘甫平, 陈伟涛, 张绪教, 等. 热红外遥感反演陆地表面温度研究进展[J], 国土资源遥感, 2006, 18(1): 6-11. Gan F P, Chen W T, Zhang X J, et al. The progress in the study of thermal infrared remote sensing for retrieving land surface temperature [J]. Remote Sensing for Natural Resources, 2006, 18(1): 6-11. (in Chinese) [22] 阎福礼, 吴亮, 王世新, 等. 水体表面温度反演研究综述[J]. 地球信息科学学报, 2015, 17(8): 969- 978. Yan F L, Wu L, Wang S X, et al. Review on remote sensing retrieval of water surface temperature [J]. Journal of Geo-Information Science, 2015, 17(8): 969-978. (in Chinese) [23] 苗正红, 于亚楠, 邸健, 等. 基于遥感技术的老龙口水库地表温度反演与影响因素分析研究[J]. 水利水电技术, 2022, 53(10): 144-154. Miao Z H, Yu Y N, Di J, et al. Research on surface temperature inversion and influencing factors analysis of Laolongkou Reservoir based on remote sensing technology [J]. Water Resources and Hydropower Technology, 2022, 53(10): 144-154. (in Chinese) [24] 王艳芳, 罗慧芬, 宋红梅. 基于Landsat-8 IRS的临汾市尧都区地表温度反演研究[J]. 山西师范大学学报(自然科学版), 2022, 36(4): 110-113. Wang Y F, Luo H F, Song H M. Inversion study of surface temperature in Yaodu District, Linfen City basd on Landsat-8 TIRS [J]. Journal of Shanxi Normal University (Natural Science Edition), 2022, 36(4): 110-113. (in Chinese) [25] 孙愉钧, 杨久东. 基于Landsat-8的唐山市地表温度反演[J]. 华北理工大学学报(自然科学版), 2022, 44(2): 45-52. Sun Y J, Yang J D. Surface temperature inversion in Tangshan City based on Landsat-8[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2022, 44(2): 45-52. (in Chinese) [26] 龚绍琦, 陆品廷, 孙德勇, 等. HJ-1B/IRS热红外数据反演太湖水温的方法比较[J]. 湖泊科学, 2016, 28(3): 645-653. Gong S Q, Lu P T, Sun D Y, et al. Comparison of methods for inverting water temperature of Lake Taihu with HJ-1B/IRS thermal infrared data [J]. Journal of Lake Sciences, 2016, 28(3): 645-653. (in Chinese) [27] 林征, 乔纪纲, 刘小平. 湖泊表面温度的单通道热红外遥感反演研究[J], 热带地理, 2012. 5, 32(3): 252-259. Lin Z, Qiao J G, Liu X P. Single-channel thermal infrared remote sensing inversion of lake surface temperature [J]. Tropical Geography, 2012, 32(3): 252-259. (in Chinese) [28] 石希, 夏军强, 孙健. 基于热红外遥感影像的河流水温反演方法比较——以长江上游流域为例[J]. 湖泊科学, 2022, 34(1): 307-319. Shi X, Xia J Q, Sun J. Comparison of river water temperature inversion methods based on thermal infrared remote sensing images: a case study of the upper reaches of the Yangtze River [J]. Journal of Lake Science, 2022, 34(1): 307-319. (in Chinese) [29] 石希, 孙健, 史立地. 基于Landsat卫星遥感资料的河流水温反演研究[J]. 水力发电学报, 2021, 40(2): 121-130. Shi X, Sun J, SHI L D. Research on river water temperature inversion based on Landsat satellite remote sensing data [J]. Journal of Hydroelectric Engineering, 2021, 40(2): 121-130. (in Chinese) [30] 林媛. 基于多源遥感的海水表面温度反演研究[D]. 上海: 华东师范大学, 2013. [31] 李明慧, 康世昌, 朱立平, 等. 西藏纳木错沉积物单水方解石出现前后的环境变化[J]. 第四纪研究, 2008(4): 601-609. Li M H, Kang S C, Zhu L P, et al. Environmental changes before and after the appearance of monohydrate calcite in Namco sediment in Tibet [J]. Quaternary Science, 2008(4): 601-609. (in Chinese) [32] 勾鹏, 叶庆华, 魏秋方. 2000—2013年西藏纳木错湖冰变化及其影响因素[J]. 地理科学进展, 2015, 34(10): 1241-1249. Gou P, Ye Q H, Wei Q F. Ice changes and its influencing factors in Namco Lake in Tibet from 2000 to 2013[J]. Progress in Geography, 2015, 34(10): 1241-1249. (in Chinese) [33] 鲁安新, 姚檀栋, 王丽红, 等. 青藏高原典型冰川和湖泊变化遥感研究[J]. 冰川冻土, 2005(6): 783-792. Lu A X, Yao T D, Wang L H, et al. Remote sensing study on typical glacier and lake changes in Qinghai-Tibet Plateau [J]. Glaciology and Geocryology, 2005(6): 783-792. (in Chinese) [34] 王苏民. 中国湖泊志[M]. 北京: 科学出版社, 1998. [35] 朱大岗, 孟宪刚, 赵希涛, 等. 西藏纳木错和藏北高原古大湖晚更新世以来的湖泊演化与气候变迁[J]. 中国地质, 2004, 31(3): 269-277. Zhu D G, Meng X G, Zhao X T, et al. 2004. Evolution and climatic change of Namco of Tibet and an ancient large lake in the northern Tibetan Plateau since the late Pleistocene [J]. Geology in China, 2004, 31(3): 269-277. [36] 徐凤翔. 西藏高原湿地掠影之一: 纳木错湿地[J]. 湿地科学与管理, 2006(3): 32-36. Xu F X. One of the glimpses of the wetlands of the Tibet Plateau: Namco Wetland [J]. Wetland Science and Management, 2006(3): 32-36. (in Chinese) [37] 廖丽. 千岛湖地形调查及湖面温度场卫星数据的反演[D]. 杭州: 杭州电子科技大学, 2015. [38] Chander G, Markham B. Revised Landsat-5 TM radiometric calibration procedures and post calibration dynamic ranges [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11): 2674-2677. [39] 张爱因, 张晓丽. Landsat-8地表温度反演及其与MODIS温度产品的对比分析[J]. 北京林业大学学报, 2019, 41(3): 1-13. Zhang A Y, Zhang X L. Landsat-8 surface temperature inversion and its comparative analysis with MODIS temperature products [J]. Journal of Beijing Forestry University, 2019, 41(3): 1-13. (in Chinese) [40] 陈争, 王伟, 张圳, 等. 基于实测值的Landsat-8水面温度反演算法对比——以太湖为例[J]. 科学技术与工程, 2020, 20(32): 13317-13326. Chen Z, Wang W, Zhang Z, et al. Comparison of Landsat-8 water surface temperature inversion algorithm based on measured value: taking Taihu Lake as an example [J]. Science Technology and Engineering, 2020, 20(32): 13317-13326. (in Chinese) [41] 黄妙芬, 毛志华, 邢旭峰, 等. HJ-1B/IRS水温反演模型及监测示范[J]. 国土资源遥感, 2011, 89(2): 81-86. Huang M F, Mao Z H, Xing X F, et al. HJ-1B/IRS water temperature inversion model and monitoring demonstration [J]. Remote Sensing for Land and Resources, 2011, 89(2): 81-86. (in Chinese) [42] 王君波. 纳木错站逐日气象数据(2019-2020) [DB/OL]. 2021[2022-07-20]. https://doi.org/10.11888/Meteoro.tpdc.271782. |
[1] | 马丹, 汤志伟, 马小玉, 邵尔辉, 黄达沧. 基于GEE的中国不同生态系统林火驱动力研究[J]. 应用科学学报, 2024, 42(4): 684-694. |
[2] | 杨光辉, 薛存金, 刘敬一, 邬群勇, 伍程斌. 基于时序栅格的暴雨事件提取与追踪方法[J]. 应用科学学报, 2019, 37(4): 510-518. |
[3] | 王恒, 张丽, 毕森, 韩瑞丹. 海南城市发展进程遥感监测分析与模拟[J]. 应用科学学报, 2018, 36(5): 798-807. |
[4] | 冯发杰, 吏军平, 丁亚洲, 朱坤, 崔卫红. 基于多尺度视觉特征组合的高分遥感影像目标检测[J]. 应用科学学报, 2018, 36(3): 471-484. |
[5] | 马丹, 程辉, 毛艳玲, 邢世和. 基于DMSP/OLS夜间灯光影像的省际经济发展水平评估模型研究[J]. 应用科学学报, 2017, 35(5): 647-657. |
[6] | 毕森, 王恒, 张丽, 李通, 刘东, 韩瑞丹. 基于不透水面的海南港口城市扩张分析[J]. 应用科学学报, 2017, 35(3): 346-354. |
[7] | 曹青, 张鹏林, 李维庆, 栾奕. 土地利用变化分析及时空动态模拟[J]. 应用科学学报, 2017, 35(3): 337-345. |
[8] | 张春森, 胡艳, 史晓亮. 基于AVHRR和MODIS NDVI数据的黄土高原植被覆盖时空演变分析[J]. 应用科学学报, 2016, 34(6): 702-712. |
[9] | 李溢龙, 李晓红, 薛存金, 林孝松. 一种基于事件的海洋关联规则挖掘方法[J]. 应用科学学报, 2016, 34(4): 387-396. |
[10] | 李通, 张丽, 申茜, 张炳华. 湄公河下游洪灾淹没面积多源遥感时序监测分析[J]. 应用科学学报, 2016, 34(1): 75-83. |
[11] | 王国力, 周伟, 丛瑜, 关键. 多尺度自卷积方差显著性SAR图像目标检测[J]. 应用科学学报, 2013, 31(6): 607-6. |
[12] | 朱俊杰1,2, 杜小平1,2, 范湘涛1,2, 郭华东1,2. GIS数据约束的海岸带SAR图像多尺度分割[J]. 应用科学学报, 2013, 31(1): 79-83. |
[13] | 薛存金1;2, 温晓阳1;2, 董庆1;2. SAR图像的自适应边缘保持去噪滤波[J]. 应用科学学报, 2011, 29(1): 44-50. |
[14] | 薛存金,董庆. 多海洋参数赤潮MODIS综合监测[J]. 应用科学学报, 2010, 28(2): 147-151. |
[15] | 种国双, 海月, 郑华, 徐卫华, 欧阳志云. 石漠化遥感信息提取方法进展[J]. 应用科学学报, 2021, 39(6): 961-968. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||