[1] Lun X Q, Zhao Y T. Recent progresses in predictive biomarkers for metastatic recurrence of human hepatocellular carcinoma: a review of literatures[J]. Journal of Cancer Research and Clinical Oncology, 2004, 130(9): 497-513. [2] Ji J F, Shi J, Anuradha B, et al. MicroRNA expression, survival, and response to interferon in liver cancer[J]. New England Journal of Medicine, 2009, 361(15): 1437-1447. [3] Llovet J M, Di Bisceglie A M, Bruix J, et al. Design and endpoints of clinical trials in hepatocellular carcinoma[J]. National Cancer Institute Journal, 2008, 1000(10): 698-711. [4] 田娟秀, 刘国才, 谷珊珊, 等. 医学图像分析深度学习方法研究与挑战[J]. 自动化学报, 2018, 44(3): 401-424. Tian J X, Liu G C, Gu S S, et al. Deep learning in medical image analysis and its challenges[J]. Acta Automatica Sinica, 2018, 44(3): 401-424. (in Chinese) [5] 叶萌萌. 基于支持向量机的肝脏肿瘤良、 恶性识别研究[D]. 杭州: 浙江大学, 2012. [6] 刘保魁. CD24蛋白在肝癌患者血浆中的表达及其临床意义[D]. 郑州: 郑州大学, 2013. [7] 冯茜. Logistic回归和ROC曲线综合评价四种指标对原发性肝癌的诊断价值[J]. 标记免疫分析与临床, 2016, 23(6): 641-644, 664. Feng Q. Comprehensive evaluation of the diagnostic value of four markers for primary hepatic carcinoma by ROC curve and logistic regression[J]. Labeled Immunoassays and Clinical Medicine, 2016, 23(6): 641-644, 664. (in Chinese) [8] Poynard T, Imbert B F, Munteanu M, et al. Overview of the diagnostic value of biochemical markers of liver fibrosis (fibrotest, HCV fibrosure) and necrosis (actitest) in patients with chronic hepatitis C[J]. Comparative Hepatology, 2004, 3(1): 1-8. [9] Tao W C, Greenson J K, Fontana R J, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C[J]. Hepatology, 2003, 38(2): 518-526. [10] Azarkhish I, Raoufy M R, Gharibzadeh S. Artificial intelligence models for predicting iron deficiency anemia and iron serum level based on accessible laboratory data[J]. Journal of Medical Systems, 2012, 36(3): 2057-2061. [11] Fang M, Zhao Y P, Zhou F G, et al. N-glycan based models improve diagnostic efficacies in hepatitis B virus-related hepatocellular carcinoma[J]. International Journal of Cancer, 2009, 127(1): 148-159. [12] Zhao J Y, Zhao Y P, Wang H, et al. Association between metabolic abnormalities and HBV related hepatocelluar carcinoma in Chinese: a cross-sectional study[J]. Nutrition Journal, 2011, 10(1): 49. [13] 陈长军, 詹永照, 文传军, 等. 支持向量描述鉴别分析及在人脸识别中的应用[J]. 计算机应用研究, 2010, 27(2): 488-490. Chen C J, Zhan Y Z, Wen C J, et al. Face recognition based on support vector network and relevance feedback[J]. Application Research of Computers, 2010, 27(2): 488-490. (in Chinese) [14] 夏国恩, 金炜东, 张葛祥. 基于组合特征的手写体数字识别方法[J]. 计算机应用研究, 2006(6): 170-172. Xia G E, Jin W D, Zhang G X. Hand written digit recognition method based on combination features[J]. Application Research of Computers, 2006(6): 170-172. (in Chinese) [15] 时永刚, 程坤, 刘志文. 结合深度学习和支持向量机的海马子区图像分割[J]. 中国图象图形学报, 2018, 23(4): 542-551. Shi Y G, Cheng K, Liu Z W. Segmentation of hippocampal subfields by using deep learning and support vector machine[J]. Journal of Image and Graphics, 2018, 23(4): 542-551. (in Chinese) [16] Dina K B, Moch A B, Adiwijaya. On feature augmentation for semantic argument classification of the quran English translation using support vector machine[J]. Journal of Physics: Conference Series, 2018, 971: 012043. [17] 李素, 袁志高, 王聪, 等. 群智能算法优化支持向量机参数综述[J]. 智能系统学报, 2018, 13(1): 70-84. Li S, Yuan Z G, Wang C, et al. Optimization of support vector machine parameters based on group intelligence algorithm[J]. CAAI Transactions on Intelligent Systems, 2018, 13(1): 70-84. (in Chinese) [18] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1): 36-46. Zhang X G. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1): 36-46. (in Chinese) [19] 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10. Ding S F, Qi B J, Tan H Y. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10. (in Chinese) [20] 郭明玮, 赵宇宙, 项俊平, 等. 基于支持向量机的目标检测算法综述[J]. 控制与决策, 2014, 29(2): 193-200. Guo M W, Zhao Y Z, Xiang J P, et al. Review of object detection methods based on SVM[J]. Control and Decision, 2014, 29(2): 193-200. (in Chinese) [21] 张扬, 赵治栋, 叶海慧. 基于遗传算法和最小二乘支持向量机的胎儿状态智能评估[J]. 生物医学工程学杂志, 2019, 36(1): 131-139. Zhang Y, Zhao Z D, Ye H H. Intelligent fetal state assessment based on genetic algorithm and least square support vector machine[J]. Journal of Biomedical Engineering, 2019, 36(1): 131-139. (in Chinese) [22] Li C B, Lin S S, Xu F Q, et al. Short-term wind power prediction based on data mining technology and improved support vector machine method: a case study in Northwest China[J]. Journal of Cleaner Production, 2018, 205(5): 909-922. [23] Cao G G, Cao C, Qing Z, et al. Differential evolution improved with intelligent mutation operator based on proximity and ranking[C]// Proceedings of the 11th International Symposium on Computational Intelligence and Design, Piscataway, 2018: 196-201. [24] 曹国刚, 张晴, 张培君, 等. 基于多核并行化差异进化算法的图像配准方法[J]. 计算机工程与应用, 2017, 53(20): 166-172. Cao G G, Zhang Q, Zhang P J, et al. Multicore-based parallelized differential evolution for image registration[J]. Computer Engineering and Applications, 2017, 53(20): 166-172. (in Chinese) [25] Storn R, Price K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. [26] Dragoi E N, Dafinescu V, et al. Parameter control and hybridization techniques in differential evolution: a survey[J]. Artificial Intelligence Review, 2016, 45(4): 447-470. [27] Das S, Mullick S S, Suganthan P N. Recent advances in differential evolution – an updated survey[J]. Swarm and Evolutionary Computation, 2016, 27(2): 1-30. [28] 戴小也, 於鑫慧, 饶中钰. 基于近红外光谱技术的猪肉品质检测应用研究[J]. 红外, 2018, 39(9): 22-26, 48. Dai X Y, Yu X H, Rao Z Y. Research on application of pork quality detection based on near infrared spectroscopy[J]. Infrared, 2018, 39(9): 22-26, 48. (in Chinese) |