应用科学学报 ›› 2012, Vol. 30 ›› Issue (2): 141-145.doi: 10.3969/j.issn.0255-8297.2012.02.006
靳一, 王继武, 吴乐南
JIN Yi, WANG Ji-wu, WU Le-nan
摘要:
参数选择对于支持向量机(support vector machine, SVM)的分类性能很重要,其本质是搜索寻优.该文提出以最小化K-fold交叉验证误差为目标,以改进模拟退火粒子群优化算法(improved simulated annealing particle swarm optimization, IM-SAPSO)为寻优方法的SVM参数优化方法. 利用优化的SVM对扩展的二元相移键控(extended binary phase shift keying, EBPSK)通信系统中经冲击滤波器的“0”和“1”码元进行分类,并和基于SVM、PSO-SVM以及幅度积分判决的EBPSK检测器进行性能对比. 仿真结果表明:基于IMSAPSO和SVM的EBPSK检测器性能明显好于其他3 种检测器.
中图分类号: