[1] Alvarenga F A P, Borges I, Palkovi L, et al. Using a three-axis accelerometer to identify and classify sheep behaviour at pasture [J]. Applied Animal Behaviour Science, 2016, 181: 91-99. [2] Bernal J, Kushibar K, Asfaw D S, et al. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review [J]. Artificial Intelligence in Medicine, 2019, 95: 64-81. [3] Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos [C]//28th Conference on Neural Information Processing Systems, 2014: 568-576. [4] Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3D convolutional networks [C]//IEEE/CVF International Conference on Computer Vision, 2015: 4489-4497. [5] Zhang K, Sun M, Han T X, et al. Residual networks of residual networks: multilevel residual networks [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(6): 1303-1314. [6] Carreira J, Zisserman A, Quo V. Action recognition? A new model and the kinetics dataset [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017: 4724-4733. [7] Feichtenhofer C, Fan H Q, Malik J, et al. SlowFast networks for video recognition [C]// IEEE/CVF International Conference on Computer Vision, 2019: 6202-6211. [8] Lin J, Gan C, Han S. TSM: temporal shift module for efficient video understanding [C]// IEEE/CVF International Conference on Computer Vision, 2019: 7083-7093. [9] Kalfaoglu M E, Kalkan S, Alatan A A. Late temporal modeling in 3D CNN architectures with BERT for action recognition [C]//Computer Vision-ECCV 2020 Workshops, 2020: 731-747. [10] Fuentes A, Yoon S, Park J, et al. Deep learning-based hierarchical cattle behavior recognition with spatio-temporal information [J]. Computers and Electronics in Agriculture, 2020, 177: 105627. [11] Nasirahmadi A, Sturm B, Edwards S, et al. Deep learning and machine vision approaches for posture detection of individual pigs [J]. Sensors, 2019, 19(17): 3738. [12] Feng L, Zhao Y, Sun Y, et al. Action recognition using a spatial-temporal network for wild felines [J]. Animals, 2021, 11(2): 485. [13] Schindler F, Steinhage V. Identification of animals and recognition of their actions in wildlife videos using deep learning techniques [J]. Ecological Informatics, 2021, 61: 101215. [14] Tran D, Wang H, Torresani L, et al. A closer look at spatiotemporal convolutions for action recognition [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6450-6459. [15] 王春清, 王悦涛, 尚书旗, 等. 基于YOLOv5x的鸡只基本行为识别方法研究[J]. 农业装备与车辆工程, 2024, 62(4): 1-5. Wang C Q, Wang Y T, Shang S Q, et al. Research on chicken basic behavior recognition method based on YOLOv5x [J]. Agricultural Equipment & Vehicle Engineering, 2024, 62(4): 1-5. (in Chinese) [16] 袁洪波, 曹润柳, 程曼. 融合Res3D、 BiLSTM和注意力机制的羊只行为识别方法[J]. 农业机械学报, 2024, 55(4): 221-230. Yuan H B, Cao R L, Cheng M. Fusion of Res3D, BiLSTM and attention mechanism for sheep behavior recognition method [J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(4): 221-230. (in Chinese) [17] 杜妍茹. 基于计算机视觉的牛日常行为识别研究[D]. 包头: 内蒙古科技大学, 2023. [18] Du Y H, Zhao Z C, Song Y, et al. StrongSORT: make DeepSORT great again [J]. IEEE Transactions on Multimedia, 2023, 25: 8725-8737. [19] Li C. Dangerous posture monitoring for undersea diver based on frame difference method [J]. Journal of Coastal Research, 2020, 103(S1): 939-942. [20] Wang Z, She Q, Smolic A. Action-net: multipath excitation for action recognition [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13214-13223. [21] Zhang H, Zu K K, Lu J, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neural network [C]//Asian Conference on Computer Vision, 2022: 1161-1177. [22] Hu J, Shen L, Sun G. Squeeze-and-excitation networks [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. [23] Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722. [24] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module [C]//European Conference on Computer Vision, 2018: 3-19. [25] Huang Z L, Wang X G, Huang L C, et al. CCNET: criss-cross attention for semantic segmentation [C]//IEEE/CVF International Conference on Computer Vision, 2019: 603-612. [26] Wang X L, Girshick R, Gupta A, et al. Non-local neural networks [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803. |