Journal of Applied Sciences ›› 2021, Vol. 39 ›› Issue (4): 660-671.doi: 10.3969/j.issn.0255-8297.2021.04.013
• Special Issue on CCF NCCA 2020 • Previous Articles
LAI Yibin1, LU Shenglian1,2, QIAN Tingting3, SONG Zhen1, CHEN Ming1,2
Received:
2020-09-06
Published:
2021-08-04
CLC Number:
LAI Yibin, LU Shenglian, QIAN Tingting, SONG Zhen, CHEN Ming. Three-Dimensional Point Cloud Segmentation for Plants[J]. Journal of Applied Sciences, 2021, 39(4): 660-671.
[1] Alexandratos N. World food and agriculture to 2030/50, highlights and views from mid-2009[C]//How to Feed the World in 2050 A Technical Meeting of Experts, 2009:24-26. [2] Houle D, Govindaraju D R, Omholt S. Phenomics:the next challenge[J]. Nature Reviews Genetics, 2010, 11(12):855-866. [3] Jiang Y, Li C, Paterson A H. High throughput phenotyping of cotton plant height using depth images under field conditions[J]. Computers and Electronics in Agriculture, 2016, 130:57-68. [4] 毛罕平, 张艳诚, 胡波. 基于模糊C均值聚类的作物病害叶片图像分割方法研究[J]. 农业工程学报, 2008, 24:136-140. Mao H P, Zhang Y C, Hu B. Segmentation of crop disease leaf images using fuzzy C-means clustering algorithm[J]. Journal of Agricultural Engineering, 2008, 24:136-140. (in Chinese) [5] 李凯, 冯全, 张建华. 棉花苗叶片复杂背景图像的联合分割算法[J]. 计算机辅助设计与图形学学报, 2017, 29(10):1871-1880. Li K, Feng Q, Zhang J H. Co-segmentation algorithm for complex background image of cotton seedling leaves[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(10):1871-1880. (in Chinese) [6] 孙俊, 宋佳, 武小红, 等. 基于改进Otsu算法的生菜叶片图像分割方法[J]. 江苏大学学报, 2018, 39(2):179-184. Sun J, Song J, Wu X H, et al. Image segmentation method of lettuce leaf based on improved Otsu algorithm[J]. Journal of Jiangsu University, 2018, 39(2):179-184. (in Chinese) [7] Singh V, Misra A K. Detection of plant leaf diseases using image segmentation and soft computing techniques[J]. Information Processing in Agriculture, 2017, 4(1):41-49. [8] Xie H, Fan Z, Li W, et al. Tobacco plant recognizing and counting based on SVM[C]//International Conference on Industrial Informatics, 2016:109-113. [9] Hosoi F, Omasa K. Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning LiDAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12):3610-3618. [10] Mccarthy C L, Hancock N H, Raine S R. Applied machine vision of plants:a review with implications for field deployment in automated farming operations[J]. Intelligent Service Robotics, 2010, 3(4):209-217. [11] 喻垚慎. 基于点云数据的植物器官分割方法[D]. 南京:南京林业大学, 2016. [12] Mortensen A K, Bender A, Whelan B, et al. Segmentation of lettuce in coloured 3D point clouds for fresh weight estimation[J]. Computers and Electronics in Agriculture, 2018, 154:373-381. [13] Jin S, Su Y, Wu F, et al. Stem-leaf segmentation and phenotypic trait extraction of individual maize using terrestrial LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3):1336-1346. [14] Fang H, Zhu J, Hu P, et al. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations[J]. Annals of Botany, 2018, 121(5):1079-1088. [15] Itakura K, Hosoi F. Automatic leaf segmentation for estimating leaf area and leaf inclination angle in 3D plant images[J]. Sensors, 2018, 18(10):3576. [16] Junjie L Y L, John D. Point cloud based iterative segmentation technique for 3D plant phenotyping[C]//International Conference on Information and Automation, 2018:1072-1077. [17] Jin S, Guan H, Zhang J, et al. Separating the structural components of maize for field phenotyping using terrestrial LiDAR data and deep convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(4):1-15. [18] Mccarthy C L, Hancock N H, Raine S R. Applied machine vision of plants:a review with implications for field deployment in automated farming operations[J]. Intelligent Service Robotics, 2010, 3(4):209-17. [19] Nguyen A, Le B. 3D Point Cloud Segmentation:a survey[C]//Robotics Automation and Mechatronics, 2013:225-230. [20] 彭宝江, 钟若飞, 孙海丽, 等. 面向DEM构建的点云四叉树和R树混合索引研究[J]. 应用科学学报, 2018, 36(4):644-654. Peng B J, Zhong R F, Sun H L, et al. Hybrid index method based on quad tree and R-tree for DEM reconstruction of airborne point cloud[J]. Journal of Applied Sciences, 2018, 36(4):644-654. (in Chinse) [21] Lin Y, Ruifang Z, Pujuan S, et al. Segmentation of crop organs through region growing in 3D space[C]//International Conference on Agro-geoinformatics, 2016:1-6. [22] Vieira M, Shimada K. Surface mesh segmentation and smooth surface extraction through region growing[J]. Computer Aided Geometric Design, 2005, 22(8):771-792. [23] Stein S C, Schoeler M, Papon J, et al. Object partitioning using local convexity[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 304-311. [24] 孙翔. 点云数据边缘提取及几何特征测量算法研究[D]. 秦皇岛:燕山大学, 2018. [25] Charles R Q, Su H, Kaichun M, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Computer Vision and Pattern Recognition, 2017:77-85. [26] Qi C R, Yi L, Su H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017:30. |
[1] | HAO Yan, SHI Huiyu, HUO Shoujun, HAN Dan, CAO Rui. Emotion Classification Based on EEG Deep Learning [J]. Journal of Applied Sciences, 2021, 39(3): 347-346. |
[2] | SIMA Yi, YI Jizheng, CHEN Aibin, ZHOU Mengna. Fully Expression Frame Localization and Recognition Based on Dynamic Face Image Sequences [J]. Journal of Applied Sciences, 2021, 39(3): 357-356. |
[3] | DU Chengze, DUAN Youxiang, SUN Qifeng. Seismic Fault Identification Method Based on ResUNet and Dense CRF Model [J]. Journal of Applied Sciences, 2021, 39(3): 367-366. |
[4] | YU Qun, ZHANG Jianxin, WEI Xiaopeng, ZHANG Qiang. Cascaded Separable and Dilated Residual U-Net for Liver Tumor Segmentation [J]. Journal of Applied Sciences, 2021, 39(3): 378-377. |
[5] | CHENG Kun, LI Chuanyi, JIA Xinxin, GE Jidong, LUO Bin. News Summarization Extracting Method Based on Improved MMR Algorithm [J]. Journal of Applied Sciences, 2021, 39(3): 443-442. |
[6] | CAO Guogang, LI Mengxue, CHEN Ying, CAO Cong, WANG Ziyi, FANG Meng, GAO Chunfang, LIU Yunxiang. Classification Method of Improved Support Vector Machine and Its Application in Early Detection of Primary Liver Cancer [J]. Journal of Applied Sciences, 2021, 39(3): 481-480. |
[7] | JIA Dan, SUN Jingyu. TF-Ranking Recommendation Method Based on User Session [J]. Journal of Applied Sciences, 2021, 39(3): 495-494. |
[8] | JIN Yan, MAO Minmin, XU Qiuyu, OUYANG Yuling, JU Jiaqi. Development of NB-IoT Based Intelligent LED Light Pole Monitoring System [J]. Journal of Applied Sciences, 2021, 39(2): 241-249. |
[9] | ZHU Yanyan, LI Sheng, FENG Guorui, ZHANG Xinpeng. Fingerprint Recognition System Based on Editable Blockchain [J]. Journal of Applied Sciences, 2021, 39(2): 330-337. |
[10] | XIANG Weijing, TSAI Weitek. Research and Design of Legal Smart Contract Platform Model [J]. Journal of Applied Sciences, 2021, 39(1): 109-122. |
[11] | ZHANG Yubin, XIONG Bangshu, OU Qiaofeng, HUANG Jianping, CHEN Yaofeng. Circular Marker Detection of Under-Exposed Images of Helicopter Blades Based on YOLOv3 and Watershed [J]. Journal of Applied Sciences, 2020, 38(6): 906-915. |
[12] | ZHENG Hong, YE Cheng, JIN Yonghong, CHENG Yunhui. Customer Churn Prediction Method Based on Stacking Ensemble Learning [J]. Journal of Applied Sciences, 2020, 38(6): 944-954. |
[13] | YU Shuangsheng, YANG Zhongliang, JIANG Minyu, HUANG Yongfeng. Text Steganography Based on Neural Machine Translation [J]. Journal of Applied Sciences, 2020, 38(6): 976-985. |
[14] | YAO Rujing, YANG Lei, YANG Tao, HU Yingxin, TIAN Qiang, WU Ou. Analysis for Psychological Scale Big Data Based on Improved Ising Model [J]. Journal of Applied Sciences, 2020, 38(3): 339-352. |
[15] | JIANG Qinyin, ZHANG Xi. Topic-Specific Assessment Approach for Social Network Influence Evaluation [J]. Journal of Applied Sciences, 2020, 38(3): 353-366. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||