[1] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017, 30: 5997-6008. [2] Radford A, Wu J, Child R, et al. Language models are unsupervised multitask learners [EB/OL]. [2024-10-30]. https://cdn.openai.com/better-language-models/language_models_ are_unsupervised_multitask_learners.pdf. [3] Bai Y, Jones A, Ndousse K, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback [DB/OL]. (2022-04-22) [2024-10-30]. http://arxiv.org/abs/2204.05862. [4] Touvron H, Lavril T, Izacard G, et al. Llama: open and efficient foundation language models [DB/OL]. (2023-02-27) [2024-10-30]. http://arxiv.org/abs/2302.13971. [5] Black S, Biderman S, Hallahan E, et al. GPT-Neox-20B: an open-source autoregressive language model [DB/OL]. (2022-04-14) [2024-10-30]. http://arxiv.org/abs/2204.06745. [6] Firdhous M F M, Elbreiki W, Abdullahi I, et al. WormGPT: a large language model Chatbot for criminals [C]//202324th International Arab Conference on Information Technology (ACIT). IEEE, 2023: 1-6. [7] Liu A, Pan L, Lu Y, et al. A survey of text watermarking in the era of large language models [J]. ACM Computing Surveys, 2024, 57(2): 1-36. [8] Brassil J T, Low S, Maxemchuk N F, et al. Electronic marking and identification techniques to discourage document copying [J]. IEEE Journal on Selected Areas in Communications, 1995, 13(8): 1495-1504. [9] Por L Y, Wong K S, Chee K O. UniSpaCh: a text-based data hiding method using Unicode space characters [J]. Journal of Systems and Software, 2012, 85(5): 1075-1082. [10] Sato R, Takezawa Y, Bao H, et al. Embarrassingly simple text watermarks [DB/OL]. (2023- 10-13) [2024-10-30]. http://arxiv.org/abs/2204.06745. [11] 刘豪, 孙星明, 刘晋飚. 基于字体颜色的文本数字水印算法[J]. 计算机工程, 2005, 31(15): 129-131. Liu H, Sun X M, Liu J B. Color-based watermarking algorithm for text documents [J]. Computer Engineering, 2005, 31(15): 129-131.(in Chinese) [12] Topkara U, Topkara M, Atallah M J. The hiding virtues of ambiguity: quantifiably resilient watermarking of natural language text through synonym substitutions [C]//8th Workshop on Multimedia and Security, 2006: 164-174. [13] Munyer T, Tanvir A, Das A, et al. DeepTextMark: a deep learning-driven text watermarking approach for identifying large language model generated text [DB/OL]. (2023-05-09) [2024-10- 30]. http://arxiv.org/abs/2305.05773. [14] Abdelnabi S, Fritz M. Adversarial watermarking transformer: towards tracing text provenance with data hiding [C]//2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021: 121-140. [15] Sun Z, Du X, Song F, et al. Coprotector: protect open-source code against unauthorized training usage with data poisoning [C]//ACM Web Conference, 2022: 652-660. [16] Kirchenbauer J, Geiping J, Wen Y, et al. A watermark for large language models [C]//International Conference on Machine Learning, 2023: 17061-17084. [17] Christ M, Gunn S, Zamir O. Undetectable watermarks for language models [C]//The Thirty Seventh Annual Conference on Learning Theory, 2024: 1125-1139. [18] Guo B, Zhang X, Wang Z, et al. How close is ChatGPT to human experts? comparison corpus, evaluation, and detection [DB/OL]. (2023-01-18) [2024-10-30]. http://arxiv.org/abs/ 2301.07597. |