[1] 程胡华, 王益柏, 赵亮, 等. 相似偏差订正法在短期温度预报中的应用研究[J]. 气象研究与应用, 2020, 41(3): 21-26. Cheng H H, Wang Y B, Zhao L, et al. Application of similar deviation correction method in short-term temperature forecast [J]. Journal of Meteorological Research and Application, 2020, 41(3): 21-26. (in Chinese) [2] 张延彪, 陈明轩, 韩雷, 等. 数值天气预报多要素深度学习融合订正方法[J]. 气象学报, 2022, 80(1): 153-167. Zhang Y B, Chen M X, Han L, et al. Multi-element deep learning fusion correction method for numerical weather prediction [J]. Acta Meteorologica Sinica, 2022, 80(1): 153-167. (in Chinese) [3] Li X Y, Li Z. Evaluation of bias correction techniques for generating high-resolution daily temperature projections from CMIP6 models [J]. Climate Dynamics, 2023, 61(7): 3893-3910. [4] Tong Y, Gao X J, Han Z Y, et al. Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods [J]. Climate Dynamics, 2021, 57(5): 1425-1443. [5] Enayati M, Bozorg-Haddad O, Bazrafshan J, et al. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables [J]. Journal of Water and Climate Change, 2021, 12(2): 401-419. [6] 范江琳, 陈朝平, 曹萍萍, 等. 四川地区ECWMF模式晴雨预报订正试验研究[J]. 暴雨灾害, 2022, 41(1): 58-65. Fan J L, Chen C P, Cao P P, et al. Experimental study on revision of ECWMF clear-rainy forecast in Sichuan region [J]. Torrential Rain and Disasters, 2022, 41(1): 58-65. (in Chinese) [7] Han M, Wu Q S, Liu H J, et al. Correction method by introducing cloud cover forecast factor in model temperature forecast [J]. Frontiers in Earth Science, 2023, 11: 1099344. [8] 邱学兴, 王东勇, 陈宝峰. T639模式预报系统误差统计和订正方法研究[J]. 气象, 2012, 38(5): 526-532. Qiu X X, Wang D Y, Chen B F. The statistics and correction of T639 model forecast system errors [J]. Meteorological Monthly, 2012, 38(5): 526-532. (in Chinese) [9] 林健玲, 金龙, 彭海燕. 区域降水数值预报产品人工神经网络释用预报研究[J]. 气象科技, 2006, 34(1): 12-17. Lin J L, Jin L, Peng H Y. Application of numerical forecast products to regional rainfall forecasting by artificial neural network [J]. Meteorological Science and Technology, 2006, 34(1): 12-17. (in Chinese) [10] Cho D J, Yoo C H, Im J H, et al. Comparative assessment of various machine learningbased bias correction methods for numerical weather prediction model forecasts of extreme air temperatures in urban areas [J]. Earth and Space Science, 2020, 7(4): 740-757. [11] Watt-Meyer O, Brenowitz N D, Clark S K, et al. Correcting weather and climate models by machine learning nudged historical simulations [J]. Geophysical Research Letters, 2021, 48(15): e2021GL092555. [12] 李德伦, 肖志祥, 谢宁新, 等. 机器学习中混合特征选择对模式预报广西春夏气温的订正研究[J]. 成都信息工程大学学报, 2023, 38(5): 602-609. Li D L, Xiao Z X, Xie N X, et al. A study on the adjusting spring and summer surface air temperature of ECMWF model by a hybrid feature selection method in machine learning of Guangxi [J]. Journal of Chengdu University of Information Technology, 2023, 38(5): 602-609. (in Chinese) [13] 方巍, 庞林, 王楠, 等. 人工智能在短临降水预报中应用研究综述[J]. 南京信息工程大学学报(自然科学版), 2020, 12(4): 406-420. Fang W, Pang L, Wang N, et al. Survey on the application of artificial intelligence in precipitation nowcasting [J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020, 12(4): 406-420. (in Chinese) [14] Hu Y F, Yin F K, Zhang W M. Deep learning-based precipitation bias correction approach for Yin-He global spectral model [J]. Meteorological Applications, 2021, 28(5): 2032-2045. [15] You X X, Liang Z M, Wang Y Q, et al. A study on loss function against data imbalance in deep learning correction of precipitation forecasts [J]. Atmospheric Research, 2023, 281: 106500- 106510. [16] Zhu Y H, Zhi X F, Lyu Y, et al. Forecast calibrations of surface air temperature over Xinjiang based on U-net neural network [J]. Frontiers in Environmental Science, 2022, 10: 1011321. [17] Hess P, Boers N. Deep learning for improving numerical weather prediction of heavy rainfall [J]. Journal of Advances in Modeling Earth Systems, 2022, 14(3): 2765-2775. [18] Han L, Chen M X, Chen K K, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts [J]. Advances in Atmospheric sciences, 2021, 38(9): 1444-1459. [19] Fei T H, Huang B H, Wang X, et al. A hybrid deep learning model for the bias correction of SST numerical forecast products using satellite data [J]. Remote Sensing, 2022, 14(6): 1339-1357. [20] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation [C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI, 2015: 234-241. [21] Liu Z, Lin Y T, Cao Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows [C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 9992-10002. [22] Huang H M, Lin L F, Tong R F, et al. UNet 3: a full-scale connected UNet for medical image segmentation [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020: 1055-1059. [23] 胡莹莹, 庞林, 王启光. 基于深度学习的7-15 d温度格点预报偏差订正[J]. 应用气象学报, 2023, 34(4): 426-437. Hu Y Y, Pang L, Wang Q G. Application of deep learning bias correction method to temperature grid forecast of 7-15 days [J]. Journal of Applied Meteorological Science, 2023, 34(4): 426-437. (in Chinese) [24] Han K, Wang Y H, Chen H T, et al. A survey on vision transformer [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87-110. [25] Muñoz-Sabater J, Dutra E, Agustí-Panareda A, et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications [J]. Earth System Science Data, 2021, 13(9): 4349-4383. [26] He D X, Zhou Z M, Kang Z P, et al. Numerical studies on forecast error correction of GRAPES model with variational approach [J]. Advances in Meteorology, 2019(1): 2856289. [27] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis [J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049. |