[1] Li G, Yang Y, Qu X, et al. A deep learning based image enhancement approach for autonomous driving at night [J]. Knowledge-Based Systems, 2021, 213: 106617. [2] Tan X, Xu K, Cao Y, et al. Night-time scene parsing with a large real dataset [J]. IEEE Transactions on Image Processing, 2021, 30: 9085-9098. [3] Jebadass J R, Balasubramaniam P. Low light enhancement algorithm for color images using intuitionistic fuzzy sets with histogram equalization [J]. Multimedia Tools and Applications, 2022, 81(6): 8093-8106. [4] Shang X, An N, Zhang S, et al. Toward robust and efficient low-light image enhancement: progressive attentive retinex architecture search [J]. Tsinghua Science and Technology, 2022, 28(3): 580-594. [5] Huang Z, Wang Z, Zhang J, et al. Image enhancement with the preservation of brightness and structures by employing contrast limited dynamic quadri-histogram equalization [J]. Optik, 2021, 226: 165877. [6] Li X, Gao M, Shang J, et al. A complexity reduction based retinex model for low luminance retinal fundus image enhancement [J]. Network Modeling Analysis in Health Informatics and Bioinformatics, 2022, 11(1): 30. [7] Ren X, Yang W, Cheng W H, et al. LR3M: robust low-light enhancement via low-rank regularized retinex model [J]. IEEE Transactions on Image Processing, 2020, 29: 5862-5876. [8] Zhang Y H, Zhang J W, Guo X J. Kindling the darkness: a practical low-light image enhancer [C]//27th ACM International Conference on Multimedia, 2019: 1632-1640. [9] Ma L, Liu R, Zhang J, et al. Learning deep context-sensitive decomposition for low-light image enhancement [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(10): 5666-5680. [10] Liu R, Ma L, Zhang J, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10561-10570. [11] Zhang F, Shao Y, Sun Y, et al. Unsupervised low-light image enhancement via histogram equalization prior [DB/OL]. 2021[2024-01-28]. https://arxiv.org/abs/2112.01766. [12] Fan M, Wang W, Yang W, et al. Integrating semantic segmentation and retinex model for low-light image enhancement [C]//28th ACM International Conference on Multimedia, 2020: 2317-2325. [13] Wang H, Xu K, Lau R W H. Local color distributions prior for image enhancement [C]//European Conference on Computer Vision, 2022: 343-359. [14] Jiang Y, Gong X, Liu D, et al. Enlightengan: deep light enhancement without paired supervision [J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. [15] Chen L, Chu X, Zhang X, et al. Simple baselines for image restoration [C]//European Conference on Computer Vision, 2022: 17-33. [16] Achanta R, Susstrunk S. Superpixels and polygons using simple non-iterative clustering [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4651-4660. [17] Wei C, Wang W J, Yang W H, et al. Deep retinex decomposition for low-light enhancement [C]//British Machine Vision Conference (BMVC 2018), 2018: 1-10. [18] Lee C, Kim C S. Contrast enhancement based on layered difference representation of 2D histograms [J]. IEEE Transactions on Image Processing, 2013, 22(12): 5372-5384. [19] Fu X Y, Zeng D L, Huang Y, et al. A fusion-based enhancing method for weakly illuminated images [J]. Signal Processing, 2016, 129: 82-96. [20] Guo X J, Li Y, Ling H B. LIME: low-light image enhancement via illumination map estimation [J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993. [21] Wang S, Zheng J, Hu H M, et al. Naturalness preserved enhancement algorithm for nonuniform illumination images [J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538- 3548. [22] Vonikakis V, Andreadis I, Gasteratos A. Fast centre-surround contrast modification [J]. IET Image Processing, 2008, 2(1): 19-34. [23] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer [J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212. [24] Gu K, Lin W, Zhai G, et al. No-reference quality metric of contrast-distorted images based on information maximization [J]. IEEE Transactions on Cybernetics, 2016, 47(12): 4559-4565. [25] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain [J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. [26] Qu J, Liu R W, Gao Y, et al. Double domain guided real-time low-light image enhancement for ultra-high-definition transportation surveillance [DB/OL]. 2023[2024-01-28]. https://arxiv.org/abs/2309.08382. [27] Fan G D, Fan B, Gan M, et al. Multiscale low-light image enhancement network with illumination constraint [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11): 7403-7417. [28] Lu Y, Guo Y, Liu R W, et al. MTRBNet: multi-branch topology residual block-based network for low-light enhancement [J]. IEEE Signal Processing Letters, 2022, 29: 1127-1131. [29] Wu W, Weng J, Zhang P, et al. Uretinex-net: retinex-based deep unfolding network for low-light image enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5901-5910. [30] Fu Z, Yang Y, Tu X, et al. Learning a simple low-light image enhancer from paired lowlight instances [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 22252-22261. |