[1] 肖治术, 李欣海, 王学志, 等. 探讨我国森林野生动物红外相机监测规范[J]. 生物多样性, 2014, 22(6): 704-711. Xiao Z S, Li X H, Wang X Z, et al. Developing camera-trapping protocols for wildlife monitoring in Chinese forests [J]. Biodiversity Science, 2014, 22(6): 704-711. (in Chinese) [2] 钟俊杰, 钮冰, 陈沁, 等. 深度学习在野生动物保护中的应用[J]. 兽类学报, 2023, 43(6): 734-744. Zhong J J, Niu B, Chen Q, et al. Application of deep learning in wildlife conservation [J]. Acta Theriologica Sinica, 2023, 43(6): 734-744. (in Chinese) [3] Dwivedi Y K, Hughes L, Ismagilova E, et al. Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy [J]. International Journal of Information Management, 2021, 57: 101994. [4] Jordan M I, Mitchell T M. Machine learning: trends, perspectives, and prospects [J]. Science, 2015, 349(6245): 255-260. [5] 赵婷婷, 周哲峰, 李东喜, 等. 基于改进的Cifar-10深度学习模型的金钱豹个体识别研究[J]. 太原理工大学学报, 2018, 49(4): 585-591, 598. Zhao T T, Zhou Z F, Li D X, et al. Individual identification of leopard based on improved Cifar-10 deep learning model [J]. Journal of Taiyuan University of Technology, 2018, 49(4): 585-591, 598. (in Chinese) [6] Zeng D, Veldhuis R, Spreeuwers L. A survey of face recognition techniques under occlusion [J]. IET Biometrics, 2021, 10(6): 581-606. [7] Wang P, Fan E, Wang P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning [J]. Pattern Recognition Letters, 2021, 141: 61-67. [8] Bernal J, Kushibar K, Asfaw D S, et al. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review [J]. Artificial Intelligence in Medicine, 2019, 95: 64-81. [9] Si C Y, Chen W T, Wang W, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1227-1236. [10] Esteva A, Chou K, Yeung S, et al. Deep learning-enabled medical computer vision [J]. NPJ Digital Medicine, 2021, 4(1): 5. [11] Cha S, Lim J, Kim K, et al. Deepening the accuracy of tree species classification: a deep learning-based methodology [J]. Forests, 2023, 14(8): 1602. [12] Atila Ü, Uçar M, Akyol K, et al. Plant leaf disease classification using EfficientNet deep learning model [J]. Ecological Informatics, 2021, 61: 101182. [13] Liu J J, Hou Q, Cheng M M, et al. Improving convolutional networks with self-calibrated convolutions [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10093-10102. [14] Zhu L, Wang X J, Ke Z H, et al. BiFormer: vision transformer with bi-level routing attention [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333. [15] Lee T, Na Y, Kim B G, et al. Identification of individual Hanwoo cattle by muzzle pattern images through deep learning [J]. Animals, 2023, 13(18): 2856. [16] Takaya K, Taguchi Y, Ise T. Individual identification of endangered amphibians using deep learning and smartphone images: case study of the Japanese giant salamander (Andrias japonicus) [J]. Scientific Reports, 2023, 13(1): 16212. [17] Luo C Y, Cheng S Y, Xu H, et al. Human behavior recognition model based on improved EfficientNet [J]. Procedia Computer Science, 2022, 199: 369-376. [18] Zhu X Z, Cheng D Z, Zhang Z, et al. An empirical study of spatial attention mechanisms in deep networks [C]//2019 IEEE/CVF International Conference on Computer Vision, 2019: 6687-6696. [19] Scherer D, Müller A, Behnke S. Evaluation of pooling operations in convolutional architectures for object recognition [C]//International Conference on Artificial Neural Networks, 2010: 92-101. [20] 宋大昭, 王卜平, 蒋进原, 等. 山西晋中庆城林场华北豹及其主要猎物种群的红外相机监测[J]. 生物多样性, 2014, 22(6): 733-736. Song D Z, Wang B P, Jiang J Y, et al. Using camera trap to monitor a North Chinese leopard (Panthera pardus japonesis) population and their main ungulate prey [J]. Biodiversity Science, 2014, 22(6): 733-736. (in Chinese) [21] Mathis A, Biasi T, Schneider S, et al. Pretraining boosts out-of-domain robustness for pose estimation [C]//IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 1858-1867. [22] Song H, Kim M, Lee J G. SELFIE: refurbishing unclean samples for robust deep learning [C]//International Conference on Machine Learning, 2019: 5907-5915. |