[1] 胡海洋, 张力, 李忠金. 融合自编码器和one-class SVM的异常事件检测[J]. 中国图象图形学报, 2020, 25(12): 2614-2629. Hu H Y, Zhang L, Li Z J. Anomaly detection with autoencoder and one-class SVM [J]. Journal of Image and Graphics, 25(12): 2614-2629. (in Chinese) [2] Hasan M, Choi J, Neumann J, et al. Learning temporal regularity in video sequences [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 733-742. [3] Gong D, Liu L, Le V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection [C]//IEEE/CVF International Conference on Computer Vision, 2019: 1705-1714. [4] Liu W, Luo W, Lian D, et al. Future frame prediction for anomaly detection-a new baseline [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6536-6545. [5] Dong F, Zhang Y, Nie X. Dual discriminator generative adversarial network for video anomaly detection [J]. IEEE Access, 2020, 8: 88170-88176. [6] Duta I C, Liu L, Zhu F, et al. Pyramidal convolution: rethinking convolutional neural networks for visual recognition [DB/OL]. 2006[2023-07-19]. http://arxiv.org/abs/11538, 2020. [7] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9. [8] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [9] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. [10] Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1125-1134. [11] Zaheer M Z, Lee J, Astrid M, et al. Old is gold: redefining the adversarially learned oneclass classifier training paradigm [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 14183-14193. [12] Guo M H, Xu T X, Liu J J, et al. Attention mechanisms in computer vision: a survey [J]. Computational Visual Media, 2022, 8(3): 331-368. [13] Zhang J, Qi X, Ji G. Self attention based bi-directional long short-term memory auto encoder for video anomaly detection [C]//2021 Ninth International Conference on Advanced Cloud and Big Data (CBD). IEEE, 2022: 107-112. [14] Wang J, Zhang J, Ji G, et al. Criss-cross attention based auto encoder for video anomaly event detection [J]. Intelligent Automation and Soft Computing, 2022, 34(3): 1629-1642. [15] Gu J, Zeng J, Ji G. Dual attention mechanisms based auto-encoder for video anomaly detection [C]//Artificial Intelligence and Security, 2022: 153-165. [16] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722. [17] Ning Z, Li Z, Song L. Multi-scale spatial-temporal interaction network for video anomaly detection [DB/OL]. 2023[2023-07-19]. http://arxiv.org/abs/2306.10239. [18] Huang X, Zhao C, Gao C, et al. Synthetic pseudo anomalies for unsupervised video anomaly detection: a simple yet efficient framework based on masked autoencoder [C]//ICASSP 2023- 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5. [19] Lu Y, Yu F, Reddy M K K, et al. Few-shot scene-adaptive anomaly detection [C]//16th European Conference on Computer Vision, 2020: 125-141. [20] Yang Y, Zhan D, Yang F, et al. Improving video anomaly detection performance with patchlevel loss and segmentation map [C]//2020 IEEE 6th International Conference on Computer and Communications (ICCC). IEEE, 2020: 1832-1839. [21] Wu P, Liu J, Li M, et al. Fast sparse coding networks for anomaly detection in videos [J]. Pattern Recognition, 2020, 107: 107515. [22] Tang Y, Zhao L, Zhang S, et al. Integrating prediction and reconstruction for anomaly detection [J]. Pattern Recognition Letters, 2020, 129: 123-130. [23] Astrid M, Zaheer M Z, Lee J Y, et al. Learning not to reconstruct anomalies [DB/OL]. 2021[2023-07-19]. http://arxiv.org/abs/2110.09742. [24] Xu J, Miao Z, Xu W, et al. Video anomaly detection using dual discriminator based generative adversarial network [C]//202120th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2021: 1259-1265. [25] Park C, Cho M A, Lee M, et al. FastAno: fast anomaly detection via spatio-temporal patch transformation [C]//IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 2249-2259. [26] Nawaratne R, Alahakoon D, De Silva D, et al. Spatiotemporal anomaly detection using deep learning for real-time video surveillance [J]. IEEE Transactions on Industrial Informatics, 2019, 16(1): 393-402. |