[1] Fridrich J, Goljan M, Du R. Detecting LSB steganography in color, and gray-scale images [J]. IEEE MultiMedia, 2001, 8(4): 22-28. [2] Pevný T, Filler T, Bas P. Using high-dimensional image models to perform highly undetectable steganography [C]//12th Information Hiding Conference, 2010: 161-177. [3] Baluja S. Hiding images in plain sight: deep steganography [C]//31st Annual Conference on Neural Information Processing Systems, 2017: 2070-2080. [4] Zhang C, Benz P, Karjauv A, et al. UDH: universal deep hiding for steganography, watermarking, and light field messaging [C]//34th Conference on Neural Information Processing Systems, 2020: 10223-10234. [5] Lu S P, Wang R, Zhong T, et al. Large-capacity image steganography based on invertible neural networks [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10811-10820. [6] Jing J P, Deng X, Xu M, et al. HiNet: deep image hiding by invertible network [C]//IEEE/ CVF International Conference on Computer Vision, 2021: 4713-4722. [7] Han K, Wang Y H, Tian Q, et al. GhostNet: more features from cheap operations [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1577-1586. [8] Holub V, Fridrich J, Denemark T. Universal distortion function for steganography in an arbitrary domain [J]. EURASIP Journal on Information Security, 2014(1): 1-13. [9] Filler T, Judas J, Fridrich J. Minimizing additive distortion in steganography using syndrome-trellis codes [J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 920-935. [10] Tang W X, Tan S Q, Li B, et al. Automatic steganographic distortion learning using a generative adversarial network [J]. IEEE Signal Processing Letters, 2017, 24(10): 1547-1551. [11] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets [C]//28th Conference on Neural Information Processing Systems, 2014: 2672-2680. [12] Zhu J R, Kaplan R, Johnson J, et al. HiDDeN: hiding data with deep networks [C]//15th European Conference on Computer Vision, 2018: 682-697. [13] Guan Z, Jing J, Deng X, et al. DeepMIH: deep invertible network for multiple image hiding [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 372-390. [14] Xu Y M, Mou C, Hu Y J, et al. Robust invertible image steganography [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 7875-7884. [15] Huo L, Huang L, Gan Z, et al. A fitting model with optimal multiple image hiding effect [J]. Neurocomputing, 2024, 571: 127146. [16] Shi W Z, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]//2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883. [17] Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network [C]//2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017: 6230-6239. [18] Hou Q B, Zhang L, Cheng M M, et al. Strip pooling: rethinking spatial pooling for scene parsing [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4002-4011. [19] Almohammad A, Ghinea G. Stego image quality and the reliability of PSNR [C]//2010 2nd International Conference on Image Processing Theory, Tools and Applications, 2010: 215-220. [20] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [21] Zhang R, Isola P, Efros A A, et al. The unreasonable effectiveness of deep features as a perceptual metric [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 586-595. [22] Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database [C]//2009 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2009: 248-255. [23] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context [C]//13th European Conference on Computer Vision, 2014: 740-755. [24] Heusel M, Ramsauer H, Unterthiner T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium [C]//31st Annual Conference on Neural Information Processing Systems, 2017: 6627-6638. [25] Xu G S, Wu H Z, Shi Y Q. Structural design of convolutional neural networks for steganalysis [J]. IEEE Signal Processing Letters, 2016, 23(5): 708-712. [26] Ye J, Ni J Q, Yi Y. Deep learning hierarchical representations for image steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11): 2545-2557. [27] Zhang R, Zhu F, Liu J Y, et al. Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis [J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1138-1150. |