[1] Huang X, Zhang L P. Morphological building/shadow index for building extraction from high-resolution imagery over urban areas [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(1): 161-172. [2] Jin X Y, Davis C H. Automated building extraction from high-resolution satellite imagery in urban areas using structural, contextual, and spectral information [J]. EURASIP Journal on Applied Signal Processing, 2005, 14(8): 2196-2206. [3] Wang J, Yang X C, Qin X B, et al. An efficient approach for automatic rectangular building extraction from very high resolution optical satellite imagery [J]. IEEE Geoscience & Remote Sensing Letters, 2014, 12(3): 487-491. [4] Mnih V. Machine learning for aerial image labeling [D]. Toronto, Canada: University of Toronto, 2013. [5] 李成范, 孟令奎, 刘学锋. 基于深度学习的高分遥感图像建筑物识别[J]. 应用科学学报, 2024, 42(3): 375-387. Li C F, Meng L K, Liu X F. Building recognition of high-resolution remote sensing images based on deep learning [J]. Journal of Applied Sciences, 2024, 42(3): 375-387. (in Chinese) [6] 黄显培, 孟庆祥. 基于多特征卷积神经网络的哨兵二号影像地物分类[J]. 应用科学学报, 2023, 41(5): 766-776. Huang X P, Meng Q X. Land cover classification of sentinel-2 image based on multi-feature convolution neural network [J]. Journal of Applied Sciences, 2023, 41(5): 766-776. (in Chinese) [7] Huang Z M, Cheng G L, Wang H Z, et al. Building extraction from multi-source remote sensing images via deep deconvolution neural networks [C]//IEEE International Geoscience and Remote Sensing Symposium, 2016: 1835-1838. [8] Chen K Q, Fu K, Gao X, et al. Building extraction from remote sensing images with deep learning in a supervised manner [C]//IEEE International Geoscience and Remote Sensing Symposium, 2017: 1672-1675. [9] Liu P H, Liu X P, Liu M X, et al. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network [J]. Remote Sensing, 2019, 11(10): 1-19. [10] 张祖勋, 姜慧伟, 庞世燕, 等. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7): 1091-1107. Zhang Z X, Jiang H W, Pang S Y, et al. Review and prospect in change detection of multitemporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. (in Chinese) [11] 张良培, 武辰. 多时相遥感变化检测的现状与展望[J]. 测绘学报, 2017, 46(10): 1447-1459. Zhang L P, Wu C. Advance and future development of change detection for multi-temporal remote sensing imagery [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1447-1459. (in Chinese) [12] 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版). 2018, 43(12): 1885-1898. Sui H G, Feng W Q, Li W Z, et al. Overview of multi-temporal remote sensing image change detection methods [J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1885-1898. (in Chinese) [13] Guan H. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11): 1382. [14] Rodrigo C D, Bertr L S, Alexandre B. Fully convolutional Siamese networks for change detection [C]//IEEE International Conference on Image Processing, 2018: 4063-4067. [15] Zhang P, Gong M, Su L, et al. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116(1): 24-41. [16] 张涵, 秦昆, 毕奇, 等. 注意力引导的三维卷积网络用于遥感场景变化检测[J]. 应用科学学报, 2021, 39(2): 272-280. Zhang H, Qin K, Bi Q, et al. Attention guided 3D ConvNet for aerial scene change detection [J]. Journal of Applied Sciences, 2021, 39(2): 272-280. (in Chinese) [17] Fang S, Li K, Shao J, et al. SNUNet-CD: a densely connected siamese network for change detection of VHR images [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. [18] Zhi Z A, Yi W A, Zhang Y J, et al. CLNet: cross-layer convolutional neural network for change detection in optical remote sensing imagery [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175(3): 247-267. [19] Chen H, Shi Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection [J]. Remote Sensing, 2020, 12(10): 1662. [20] Chen H, Qi Z, Shi Z. Remote sensing image change detection with transformers [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60(1): 1-14. [21] Bandara W, Patel V M. A transformer-based siamese network for change detection [C]//IEEE International Geoscience and Remote Sensing Symposium, 2022: 207-210. [22] 阚亚亚, 张孙杰, 熊娟, 等. 结合transformer多尺度实例交互的稀疏集目标检测[J]. 应用科学学报, 2023, 41(5): 777-788. Kan Y Y, Zhang S J, Xiong J, et al. Sparse set object detection combined with transformer multi-scale instance interaction [J]. Journal of Applied Sciences, 2023, 41(5): 777-788. (in Chinese) [23] 童矿. 机场净空区建筑物的智能化动态监测与超限预警研究[D]. 天津: 中国民航大学, 2022. [24] 张涵. 基于高分影像的机场净空区新增建筑物检测与识别方法[D]. 武汉: 武汉大学, 2021. [25] Peng D, Bruzzone L, Zhang Y, et al. SemiCDNet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(7): 5891-5906. [26] Roy M, Ghosh S, Ghosh A. A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system [J]. Information Sciences, 2014, 269(1): 35-47. [27] Huang G, Liu Z, Van D M L, et al. Densely connected convolutional networks [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269. [28] Dietterich T, Lathrop R, Tomas L. Solving the multiple instance problem with axis-parallel rectangles [J]. Artificial Intelligence, 1997, 89(1-2): 31-71. [29] Bi Q, Qin K, Li Z L, et al. A multiple-instance densely-connected ConvNet for aerial scene classification [J]. IEEE Transaction on Image Processing, 2020, 29(1): 4911-4926. [30] Liu X, Jiao L, Zhao J, et al. Deep multiple instance learning-based spatial-spectral classification for PAN and MS imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(1): 461-473. [31] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]//European Conference on Computer Vision, 2018: 3-19. [32] Hu J, Shen L, Sun G. Squeeze-and-excitation networks [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. [33] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. [34] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [C]//3rd International Conference on Learning Representations, 2015: 1-14. [35] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9. [36] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [37] Han X, Zhong Y, Cao L. Pretrained AlexNet architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification [J]. Remote Sensing, 2017, 9(8): 848. [38] Bi Q, Zhang H, Qin K. Multi-scale stacking attention pooling for remote sensing scene classification [J]. Neurocomputing, 2021, 436(12): 147-161. [39] Zhou B, Yi J, Bi Q. Differential convolution feature guided deep multiscale multiple instance learning for aerial scene classification [C]//IEEE International Conference on Acoustics, Speech and Signal Processing, 2021: 4594-4599. |